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ABSTRACT

Geometric image transformations that arise in the real world, such as scaling and
rotation, have been shown to easily deceive deep neural networks (DNNs). Hence,
training DNNs to be certifiably robust to these perturbations is critical. However,
no prior work has been able to incorporate the objective of deterministic certi-
fied robustness against geometric transformations into the training procedure, as
existing verifiers are exceedingly slow. To address these challenges, we propose
the first provable defense for deterministic certified geometric robustness. Our
framework leverages a novel GPU-optimized verifier that can certify images be-
tween 60× to 42,600× faster than existing geometric robustness verifiers, and
thus unlike existing works, is fast enough for use in training. Across multiple
datasets, our results show that networks trained via our framework consistently
achieve state-of-the-art deterministic certified geometric robustness and clean ac-
curacy. Furthermore, for the first time, we verify the geometric robustness of a
neural network for the challenging, real-world setting of autonomous driving.

1 INTRODUCTION

Despite the widespread success of deep neural networks (DNNs), they remain surprisingly suscep-
tible to misclassification when small adversarial changes are applied to correctly classified inputs
(Goodfellow et al., 2015; Kurakin et al., 2018). This phenomenon is especially concerning as DNNs
are increasingly being deployed in many safety-critical domains, such as autonomous driving (Bo-
jarski et al., 2016; Sitawarin et al., 2018) and medical imaging (Finlayson et al., 2019).

As a result, there have been widespread efforts aimed at formally verifying the robustness of DNNs
against norm-based adversarial perturbations (Gehr et al., 2018; Singh et al., 2019; Weng et al., 2018;
Zhang et al., 2018) and designing novel mechanisms for incorporating feedback from the verifier to
train provably robust networks with deterministic guarantees (Gowal et al., 2019; Mirman et al.,
2018; Xu et al., 2020; Zhang et al., 2020). However, recent works (Dreossi et al., 2018; Engstrom
et al., 2019; Hendrycks & Dietterich, 2019; Kanbak et al., 2018; Liu et al., 2019) have shown that
geometric transformations – which capture real-world artifacts like scaling and changes in contrast
– can also easily deceive DNNs. No prior work has formulated the construction of a deterministic
provable defense needed to ensure DNN safety against geometric transformations. Further, existing
deterministic verifiers for geometric perturbations (Balunovic et al., 2019; Mohapatra et al., 2020)
are severely limited by their scalability and cannot be used during training for building provable de-
fenses. Probabilistic geometric robustness verifiers (Fischer et al., 2020; Hao et al., 2022; Li et al.,
2021) are more scalable but may be inadequate for safety-critical applications like autonomous driv-
ing, since they may falsely label an adversarial region as robust. These limitations have prevented
the development of deterministic provable defenses against geometric transformations thus far.

Challenges. Training networks to be certifiably robust against geometric transformations carries
multiple challenges that do not arise with norm-based perturbations. First, geometric transforma-
tions are much more difficult to formally reason about than ℓp perturbations, as unlike an ℓp-ball, the
adversarial region of a geometric transformation is highly nonuniform and cannot be directly rep-
resented as a symbolic formula encoding a convex shape. Computing this adversarial input region
for geometric perturbations is indeed the main computational bottleneck faced by existing geomet-
ric robustness verifiers (Balunovic et al., 2019; Mohapatra et al., 2020), thus making the overall
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verification too expensive for use during training. Hence, training DNNs for deterministic certi-
fied robustness against geometric perturbations requires not only formulating the construction of a
provable defense, but also completely redesigning geometric robustness verifiers for scalability.

This Work. To address the outlined challenges, we propose Certified Geometric Training (CGT),
a framework for training neural networks that are deterministically certified robust to geometric
transformations. The framework consists of (1) the Fast Geometric Verifier (FGV), a novel method
to perform geometric robustness certification that is orders of magnitude faster than the state-of-the-
art and (2) computationally efficient loss functions that embed FGV into the training procedure.

We empirically evaluate our method on the MNIST (LeCun et al., 1998), CIFAR10 (Krizhevsky,
2009), Tiny ImageNet (Le & Yang, 2015), and Udacity self-driving car (Udacity, 2016) datasets
to demonstrate CGT’s effectiveness. Our results show that CGT-trained networks consistently
achieve state-of-the-art clean accuracy and certified robustness; furthermore, FGV is between 60×
to 42,600× faster than the state-of-the-art verifier for certifying each image. We also achieve several
breakthroughs: (1) FGV enables us to certify deterministic robustness against geometric transfor-
mations on entire test sets of 10,000 images, which is more than 50× the number of images over
existing works (100 in Balunovic et al. (2019) and 200 in Mohapatra et al. (2020)); (2) we are the
first to scale deterministic geometric verification beyond CIFAR10; and (3) we are the first to ver-
ify a neural network for autonomous driving under realistic geometric perturbations. Our code is
publicly available at https://github.com/uiuc-arc/CGT.

2 RELATED WORK

Geometric Robustness Certification. Certification of geometric perturbations (such as image ro-
tations or scaling) going beyond ℓp-norm attacks have recently begun to be studied in the literature.
There are two main approaches to formally verifying the geometric robustness of neural networks:
deterministic and probabilistic. Most recent works on geometric robustness verification use ran-
domized smoothing-based techniques to obtain probabilistic guarantees of robustness (Fischer et al.,
2020; Hao et al., 2022; Li et al., 2021). While these approaches can scale to larger datasets, their
analyses are inherently unsound, i.e., they may falsely label an adversarial region as robust. For
safety-critical domains, this uncertainty may be undesirable. Furthermore, such guarantees are ob-
tained over a smoothed version of a base network, which at inference time requires sampling (i.e.,
repeatedly evaluating) the network up to 10,000 times per image, thereby introducing significant
runtime or memory overhead (Fischer et al., 2020). Our work focuses on deterministic verification,
whose analysis is always guaranteed to be correct and whose certified network incurs no overhead
during inference. In particular, this type of certificate always holds against any adaptive attacker.
However, the existing deterministic geometric robustness verifiers (Balunovic et al., 2019; Moha-
patra et al., 2020) are exceedingly slow and thus unsuitable for training, due to the high cost of
abstracting the geometric input region (even before propagating it through the network). Singh et al.
(2019) study deterministic robustness against rotations, but their results are subsumed by Balunovic
et al. (2019). While some works have focused on scaling verifiers (Müller et al., 2021; Xu et al.,
2020), they have not targeted geometric robustness as we do.

Provable Defenses Against Norm-based Perturbations. Prior works (Gowal et al., 2019; Mirman
et al., 2018; Xu et al., 2020; Zhang et al., 2020) incorporate verification explicitly into the training
loop so that the trained networks become easier to verify. Typically, this task is accomplished
by formulating a loss function that strikes a balance between the desired formal guarantees (i.e.,
high certified robustness) and clean accuracy (i.e., the network’s accuracy on the original dataset).
To ensure quick loss computation over a large set of training images, interval bound propagation
(IBP) (Gowal et al., 2019; Mirman et al., 2018) is the most popular technique. However, previous
IBP works mainly consider norm-based perturbations, which do not capture the highly nonuniform
adversarial input regions that characterize geometric transformations.

3 BACKGROUND

We denote a neural network as a function f : RC×H×W → Rno from an H × W image with C
channels to no real values. We focus on feedforward networks, but our approach is general and
equally applicable to other architectures. Let x ∈ RC×H×W denote an input image and y denote its
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corresponding label. For the remainder of the paper, we write interval variables with a tilde: e.g.,
x̃ = [x, x] = {x : x ≤ x ≤ x} is an interval with x and x as lower and upper bounds, respectively.
First, we detail the geometric transformations that our work considers.

3.1 GEOMETRIC TRANSFORMATIONS

A geometric image perturbation is a function P : RC×H×W × R|θ| → RC×H×W , which takes an
input image x and parameters θ (e.g., angle of rotation, amount of brightness), then produces the
geometrically perturbed image x′. We consider interpolated transformations – rotation, translation,
scaling, and shearing – and pixelwise transformations – contrast and brightness. For ease of expres-
sion, since these transformations (Eqs. 2 and 3 below) apply independently to each image channel,
we write xi,j to denote x’s pixel in the ith row and jth column of an arbitrary channel.

Interpolated Transformations. Interpolated transformations involve an affine transformation on
each pixel’s row and column indices, followed by an interpolation operation. As these operations are
performed in the 2D plane, we first interpret the row and column indices (i, j) as points (u, v) ∈ R2,
where the u-axis is the horizontal axis and the v-axis is the vertical axis. Here, we define functions
ϕu(j) = j − (W − 1)/2 and ϕv(i) = (H − 1)/2 − i, which convert zero-indexed i, j indices
to u, v coordinates with respect to the center of an H × W image. Let Tθ : R2 → R2 be an in-
vertible affine transformation (e.g., rotation, translation) parameterized by θ (e.g., rotation angle,
amount of horizontal shift). The equations for each affine transformation are given in Eqs. 10-13
in Appendix A. To compose multiple perturbations, we compose their respective affine transforma-
tions; for example, scaling by λ, rotating by φ, then shearing by γ results in the transformation
Tθ(u, v) = (T shear

γ ◦ T rotate
φ ◦ T scale

λ )(u, v) where θ = (λ, φ, γ). Having converted row-column
indices to R2, we compute for each location (ϕu(j), ϕv(i)) the (real-valued) coordinate that maps
to this location under Tθ; we can obtain this coordinate as (u′, v′) = T−1

θ (ϕu(j), ϕv(i)), where
T−1
θ is the inverse transformation. Since these transformed coordinates may not align exactly with

integer-valued pixel indices, we must interpolate. We consider the bilinear interpolation kernel of
Jaderberg et al. (2015), given as:

Ix(u, v) =

H−1∑
n=0

W−1∑
m=0

xn,m ·max(0, 1− |v − ϕv(n)|) ·max(0, 1− |u− ϕu(m)|) (1)

The value of each pixel in the interpolated image x′ is then:

x′
i,j = Ix

(
T−1
θ (ϕu(j), ϕv(i))

)
(2)

Pixelwise Transformations. The cumulative effects of contrast and brightness acting on the pixel
xi,j are given by the respective contrast and brightness perturbation parameters α, β ∈ R, as de-
scribed in Balunovic et al. (2019); Mohapatra et al. (2020):

x′
i,j = min

(
1,max

(
0, (1 + α) · xi,j + β

))
(3)

3.2 INTERVAL BOUND PROPAGATION

For each pixel in the input and each neuron in the DNN, verification with interval bound propaga-
tion (IBP) (Gowal et al., 2019) associates an interval bounding its minimum and maximum values.
A sound verifier propagates intervals through the network from the input to the output layer by
evaluating the network’s layers using interval arithmetic; we detail these operations in Appendix B.

3.3 CERTIFYING GEOMETRIC ROBUSTNESS USING IBP

We now show how to certify the geometric robustness of classification and regression networks.

Certified Classification Robustness Against Geometric Transformations. Given an interval x̃
enclosing the set of possible perturbations on the input and a classifier f , we denote the worst-case
output vector as f̂(x̃), where (interpreting all operations via interval arithmetic) the correct class’s
entry is the lower bound and all other entries are the upper bounds of the network’s output:

f̂y(x̃) = fy(x̃) and f̂j(x̃) = fj(x̃) ∀j ∈ {1, 2, . . . , no} \ {y} (4)
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We say that f is certifiably robust for x̃ if, even in the worst case, we can still guarantee that the
network classification is correct: y = argmaxi f̂i(x̃). To certify geometric robustness on an image
x requires computing its bounds as x̃ = P (x, θ̃), where θ̃ = [θ, θ] is an interval vector bounding
the range of geometric perturbation parameters, and the geometric perturbation P is interpreted over
interval arithmetic. However, for a given range of perturbation parameters θ̃ for which we wish to
verify robustness, the interval width θ − θ may be too large for the direct evaluation of f̂(P (x, θ̃))
to yield bounds that are precise enough for successful certification. Hence, like other geometric
robustness verifiers (Balunovic et al., 2019; Mohapatra et al., 2020), we employ parameter splitting.

We subdivide the entire range of parameters θ̃ into K smaller disjoint intervals {θ̃1, θ̃2, . . . , θ̃K}
where θ̃ =

⋃K
k=1 θ̃k, and certify each split θ̃k independently. If verifying all splits succeeds, then

certification holds on the entire parameter range θ̃. As interval bounds are constants and do not
symbolically depend on the input parameters (unlike DeepG (Balunovic et al., 2019)), propagating
these bounds is highly efficient and can be done on a large number of parameter splits for improved
precision. Accounting for splitting, we say that f is certifiably robust for P (x, θ̃) if:

y = argmax
i

f̂i(P (x, θ̃k)) ∀k ∈ {1, 2, . . . ,K} (5)

Certified Regression Bound Against Geometric Transformations. Distinct from classifiers, as
regression tasks do not have a strict notion of correctness, our goal is to verify whether a network’s
outputs are within a range close to the ground truth. Hence, our certification problem is to directly
bound the network outputs. For a regression network f (interpreted over interval arithmetic), the
certified output range over the input P (x, θ̃) is the smallest interval containing the union of all
splits’ output bounds:

K⋃
k=1

{
f(P (x, θ̃k))

}
(6)

4 CERTIFIED GEOMETRIC TRAINING

We now describe the formulation of our provable defense and fast geometric verifier (FGV) that
comprise our training framework for certified geometric robustness.

4.1 ROBUST LOSS FOR CLASSIFICATION AND REGRESSION NETWORKS

Training Classification DNNs. The key to incorporating geometric robustness guarantees into
training lies in formulating certification as part of the loss function. Since f̂ represents the worst-
case classification output under a range of perturbed inputs, we can use it in the training loss to guide
the parameter updates toward obtaining provably robust DNNs. To account for parameter splitting
during certification (which is unique to our geometric setting), we formulate our training loss to
enforce local robustness at the level of individual input splits. To certify the network across the
entire desired range θ̃ = [θ, θ], we enforce this local property across all splits. Furthermore, similar
to other works on certified training, we also need to enforce high clean accuracy. This yields the
following formulation for the ideal robust classification loss:

Lci(x, y) = κ · ℓ
(
f(x), y

)
+
(1− κ

K

)
·

K∑
k=1

ℓ
(
f̂(P (x, θ̃k)), y

)
(7)

where ℓ can be any classification loss function (we use the cross-entropy loss) and κ ∈ [0, 1] governs
the relative weighting between the clean accuracy and geometric robustness terms (with higher κ
prioritizing clean accuracy).

In practice, the loss in Eq. 7 is too computationally expensive, since the runtime scales linearly with
the number of splits, which often needs to be large to ensure precise certification. As a remedy,
we instead enforce the robustness property stochastically using data augmentation in conjunction
with a randomized sampling of interval splits. We uniformly sample a scalar perturbation amount
θ ∼ U(θ, θ) and compute a local interval split θ̃l = [θ − ν, θ + ν], where ν is a hyperparameter
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vector governing the interval size of each perturbation parameter. We then compute the tractable
robust classification loss as:

Lct(x, y) = κ · ℓ
(
f(P (x, θ)), y

)
+ (1− κ) · ℓ

(
f̂(P (x, θ̃l)), y

)
(8)

Since we sample a different θ for each mini-batch of training samples, this approach will, on av-
erage, effectively enforce local robustness over the entire parameter range (hence leading to global
robustness). As in prior works (Gowal et al., 2019; Xu et al., 2020; Zhang et al., 2020), we can
vary κ with the training iteration, temporally changing the weighting between clean accuracy and
robustness. The hyperparameter vector ν is akin to ϵ in the ℓ∞-norm case, but it governs the size
of a geometric ball P (x, θ̃l) rather than an ϵ-ball; note that ν is a vector, since the interval size
corresponding to each geometric transformation may be different. We show that this hyperparam-
eter is easy to determine. Finally, while this loss function incorporates only IBP to propagate the
geometric region through the network, it can be easily adapted to other provable training methods
like CROWN-IBP (Zhang et al., 2020) by substituting the ϵ-balls in their loss functions with our
formulation of local geometric balls.

Training Regression DNNs. Since our goal is to minimize both the width of the certified output
bound as well as its distance to the ground truth, the ideal scenario would be when the certified
lower and upper bounds coincide at the ground truth. Hence, we can essentially treat the certified
bounds as worst-case network outputs and minimize both the lower and upper bounds’ distances to
the label. With similar insights gleaned from the classification loss function, we thus formulate the
robust regression loss as:

Lr(x, y) = κ · ℓ
(
f(P (x, θ)), y

)
+ (1− κ) ·

ℓ
(
f(P (x, θ̃l)), y

)
+ ℓ

(
f(P (x, θ̃l)), y

)
2

(9)

where ℓ can be any regression loss function (we use the mean squared error).

While we experimentally focus on the more common interpolated transformations, our loss for-
mulations can also be used for other parameterized semantic perturbations on which interval over-
approximations for each pixel can be computed, such as Gaussian blur or color space perturbations.

4.2 FAST GEOMETRIC VERIFIER

A key technical challenge arises during the computation of the loss functions in Eqs. 8 and 9: we
need to perform geometric robustness certification on images at every iteration of training. Certi-
fication against geometric transformations requires two key steps: (1) obtaining bounds on the set
of perturbed images obtainable after applying geometric perturbation P and (2) propagating these
bounds through a neural network. The key bottleneck of existing geometric verifiers, which renders
them unusable for training, lies in the first step (which we show in Section 5.3). This bottleneck
stems from the fact that when computing the interpolation, the sequence of arithmetic computa-
tions performed at each pixel can be drastically different depending on the pixel location, which has
precluded existing approaches from leveraging parallelism. Thus, a core part of our contribution
is designing a novel and efficient GPU-parallelizable method for computing interpolated transfor-
mations over interval bounds: serving the dual purpose of speeding up verification and being able
to utilize these bounds during training. Algorithm 1 presents the pseudocode. Additionally, we
also show a running example in Appendix C.1. By default, areas of an interpolated image with
no corresponding source pixel will be padded with zero, as in Balunovic et al. (2019). However,
our algorithm is agnostic to the particular padding mode: we discuss how to handle other padding
strategies (e.g., replicating the border pixel values) in Appendix C.2.

We mathematically decompose the interpolated transformations (Eqs. 1 and 2) into three parts which
are all GPU-parallelizable: computing the coordinates of each pixel location under inverse transfor-
mation T−1

θ , calculating the interpolation distances max(0, 1−|v−ϕv(n)|)·max(0, 1−|u−ϕu(m)|),
and finally obtaining the resulting interpolated images. Our key insight is that the first two steps are
solely dependent on the transformation Tθ and the height and width of the images, but not the image
pixel values themselves. Hence, these computations need only be done once for a given transforma-
tion range, amortizing the cost for any number of images in a batch. We now detail each part.

Inverse Coordinates 1 . We first determine the inverse coordinates (ũ′, ṽ′) = T−1

θ̃
(ϕu(j), ϕv(i))

for each (i, j) pixel index, where 0 ≤ i < H and 0 ≤ j < W for images with height H and
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Algorithm 1 Fast interval interpolated transformation.
Input: X ∈ [0, 1]N×C×H×W , a batch of N images with dimension C ×H ×W

Tθ̃ , an interpolated transformation with interval parameters θ̃
Output: X̃ ′ ∈ [[0, 1]N×C×H×W , [0, 1]N×C×H×W ], a batch of transformed interval images
1: procedure MAKEINTERPGRID(H,W, Tθ̃)
2: (i, j)← ([0, 1, . . . , H − 1], [0, 1, . . . ,W − 1])
3: (u, v)← (j − (W − 1)/2, (H − 1)/2− i)

4: (U, V )← ([uT , uT , . . . , uT ]T︸ ︷︷ ︸
H times

, [vT , vT , . . . , vT ]︸ ︷︷ ︸
W times

)

5: (Ũ ′, Ṽ ′)← T−1

θ̃
(U, V )

6: (Ũ ′
r, Ṽ

′
r )← (Ũ ′.reshape(HW, 1, 1), Ṽ ′.reshape(HW, 1, 1))

7: G̃← max(0, 1− |Ṽ ′
r − V |)⊙max(0, 1− |Ũ ′

r − U |)
8: z ← count nonzeros(G̃, dim = (1, 2))

9: g̃ ← flatten(G̃)
10: q ← get nonzero indices(g̃)
11: w̃ ← g̃[q]
12: (r, c)← (⌊(q mod HW )/W ⌋, (q mod HW ) mod W )

13: return G̃s ← (r, c, w̃, z)
14: end procedure
15:
16: procedure INTERPOLATE(X, G̃s)
17: (r, c, w̃, z)← G̃s

18: S̃ ← w̃ ⊙X[:, :, r, c]

19: X̃ ′
f ← split and sum(S̃, dim = 2, sizes = z)

20: return X̃ ′ ← X̃ ′
f .reshape(N,C,H,W )

21: end procedure

1

2

3

4

width W . The inverse transformations (shown in Appendix A Eqs. 10-13) are pixelwise, hence
this step can immediately be parallelized by defining the matrices U, V ∈ RH×W where U(i, j) =
ϕu(j) and V (i, j) = ϕv(i), then applying T−1

θ̃
over this whole grid of coordinates. Since T−1

θ̃
is

parameterized by an interval range of parameters θ̃, this inverse transformation and all subsequent
arithmetic operations are interpreted via interval arithmetic.

Interpolation Grid 2 and Exploiting Sparsity 3 . For each (ũ′, ṽ′), we next calculate the terms
max(0, 1 − |ṽ′ − ϕv(n)|) · max(0, 1 − |ũ′ − ϕu(m)|) in Eq. 1; we call these terms interpolation
distances and denote them d̃ũ

′,ṽ′

n,m . Here lies a key difference between our interpolation formulation
and that of sequential implementations. In the sequential case, one need only compute d̃ũ

′,ṽ′

n,m for
n where ṽ′ ≤ ϕv(n) ≤ ṽ′ and m where ũ′ ≤ ϕu(m) ≤ ũ′; this is because all other values of
n,m will evaluate to a distance of 0. Yet since these ranges of n,m can be vastly different for each
(ũ′, ṽ′), the only way to parallelize the simultaneous computation of these distances for all inverse
coordinates is to, for each (ũ′, ṽ′), compute d̃ũ

′,ṽ′

n,m for all 0 ≤ n < H , 0 ≤ m < W . We term
these computed distances the interpolation grid G̃. However, since most of the entries in G̃ will be
0 (i.e., the degenerate interval [0, 0]) – typically more than 99% of them – we design a custom sparse
tensor representation of G̃ so that when interpolating, only the nonzero entries will be multiplied
with image pixel values (i.e., computing xn,m · d̃ũ′,ṽ′

n,m only when the distance is nonzero). First, for
each nonzero d̃ũ

′,ṽ′

n,m , we must know its location (i.e., n,m) so that we can multiply its value with
the corresponding image pixels in the same location. To do so, we convert G̃ to COO (coordinate)
format, a 3-tuple of vectors: w̃ which stores the nonzero values of G̃, and r, c which store the
nonzero values’ row and column indices n,m. However, once we actually interpolate across images
and obtain the summands s̃ũ

′,ṽ′

n,m = xn,m · d̃ũ′,ṽ′

n,m , we need to know which summands contribute to
the same pixel (i.e., have the same ũ′ and ṽ′) and should thus be added together; this is challenging
since the grid values have been flattened. To solve this issue, we store an additional vector z that
records the number of nonzero interpolation distances for each (ũ′, ṽ′).
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Obtaining Interpolated Images 4 . After calling MAKEINTERPGRID (which only needs to be
done once for a given set of transformations) and obtaining G̃s = (r, c, w̃, z), we can now efficiently
interpolate across any batch of images X . For all batch and channel dimensions, we obtain the
pixel values at locations corresponding to the interpolation distances in w̃ (by indexing the last two
dimensions of X with r, c) and elementwise multiply with w̃ to obtain S̃, which contains the values
of all summands across all pixels. To recover the final pixel values, we sum the terms belonging
to the same pixel (i.e., the s̃ũ

′,ṽ′

n,m that have the same ũ′, ṽ′) together. To do so, we split the last
dimension of S̃ into HW chunks {hi}HW

i=1 , where each hi has length zi; then, each chunk’s sum
is exactly the final pixel value. Since this last dimension has been flattened to take advantage of
sparsity, we reshape it back to dimension H ×W to obtain the final interpolated images.

Finally, we use IBP (during both training and certification) to propagate the computed geometric
bounds through the neural network.

5 EVALUATION

We evaluate the effectiveness of CGT over multiple datasets, network architectures, and transforma-
tions. We implemented CGT atop PyTorch (Paszke et al., 2019) and use auto_LiRPA (Xu et al.,
2020) to propagate our computed geometric perturbation bounds through neural networks.

Datasets and Architectures. We evaluate our approach on the MNIST, CIFAR10, Tiny ImageNet,
and Udacity self-driving car datasets. The first three are image classification tasks, while the last is a
regression task that predicts a steering angle given a driving scene image. On MNIST and CIFAR10,
we use the same architectures from DeepG (Balunovic et al., 2019) as to compare directly with their
results. On Tiny ImageNet, we use the 7-layer convolutional network (CNN7) and WideResNet
architectures from Xu et al. (2020). On Udacity, we use the classic Nvidia architecture from Bojarski
et al. (2016). Details are in Appendix D.1.

Metrics. Our primary metrics for a classifier are (1) its clean accuracy, (2) its certified robustness
under geometric transformations, and (3) the certification time on the test set. For a regression
network, we utilize the analogous metrics of (1) mean absolute error (MAE), (2) certified MAE, i.e.,
the larger of the certified lower and upper bounds’ MAEs, as well as (3) certification time. We also
measure per-epoch runtime and GPU memory usage during training (shown in Appendix E.4).

Baselines. To the best of our knowledge, training a DNN via PGD (Madry et al., 2018) combined
with data augmentation (denoted PGD/A) and certifying it with DeepG produces the current state-
of-the-art deterministic geometric robustness and accuracy. However, the DeepG verifier does not
scale beyond CIFAR10; hence, we compare our approach to theirs on just the MNIST and CI-
FAR10 datasets, using the sets of transformations from their work. Notably, DeepG only certifies
100 images (due to long runtimes), while we certify full test sets of 10,000 images. The work of
Semantify-NN (Mohapatra et al., 2020) is strictly less precise than DeepG and also only handles
a single interpolated transformation (rotation); thus, we only compare certification with DeepG.
However, they propose an algorithm to compute the interval over-approximation of images under
rotation, and we provide an ablation study comparing the speed of Algorithm 1 to theirs.

Hyperparameters. We show the training and certification hyperparameters in Appendices D.2 and
D.3 and explain how to tune these hyperparameters in Appendix D.4.

Hardware. We trained and certified all networks (except WideResNet) on a machine with a
2.40GHz 24-core Intel Xeon Silver 4214R CPU with 192GB of main memory and one Nvidia
A100 GPU with 40GB of memory. All baseline results were also run on the same hardware for
fair comparisons. For WideResNet, we used the same CPU with four A100 GPUs.

5.1 MNIST AND CIFAR10

Table 1 presents the comparison of our approach with DeepG; asterisks denote DeepG certification
results over a subset of 100 images (since their approach takes too long to run on the full test set).
Over a variety of challenging transformations on MNIST and CIFAR10, our approach consistently
achieves state-of-the-art performance. On all MNIST experiments, our certified robustness is sub-
stantially higher than DeepG, while attaining comparable clean accuracy. Furthermore, our verifier
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Table 1: Comparison of network certification time and accuracy with the prior state-of-the-art on
MNIST and CIFAR10. We denote R(φ) a rotation of ±φ degrees; Tu(∆u) and Tv(∆v) a translation
of ±∆u pixels horizontally and ±∆v pixels vertically, respectively; Sc(λ) a scaling of ±λ%; Sh(γ)
a shearing of ±γ%; C(α) a contrast change of ±α%; and B(β) a brightness change of ±β. Asterisk
denotes that certification was measured on a subset of 100 test images.

Dataset Transformations Training +
Certification Method

Accuracy
(%)

Certified
(%)

Cert. Time
per Image (s)

FGV
Speedup

MNIST

R(30) PGD/A + DeepG 99.1 86.0∗ 19.12 –
CGT + FGV 99.1 94.2 0.00045 42623×

Tu(2), Tv(2) PGD/A + DeepG 99.1 77.0∗ 367.82 –
CGT + FGV 99.2 89.8 0.0090 40949×

Sc(5), R(5),
C(5), B(0.01)

PGD/A + DeepG 99.3 34.0∗ 155.24 –
CGT + FGV 99.1 92.6 0.0048 32563×

Sh(2), R(2), Sc(2),
C(2), B(0.001)

PGD/A + DeepG 99.2 72.0∗ 71.72 –
CGT + FGV 99.1 96.3 0.024 2933×

CIFAR10

R(10) PGD/A + DeepG 71.2 65.0∗ 78.18 –
CGT + FGV 80.5 63.2 0.465 168×

R(2), Sh(2) PGD/A + DeepG 68.5 39.0∗ 18.92 –
CGT + FGV 70.1 51.0 0.263 72×

Sc(1), R(1),
C(1), B(0.001)

PGD/A + DeepG 73.2 43.0∗ 163.26 –
CGT + FGV 71.3 42.3 2.725 60×

is several orders of magnitude faster. On CIFAR10, we achieve significantly better tradeoff between
certified robustness and accuracy than the baseline for the first two cases, while obtaining similar
results on the third transformation set; our certification time is considerably lower than DeepG. For
the first and third CIFAR10 experiments, we attain 65% and 49% on the subset of 100 images used
by DeepG (which are equal or better than their results), while the certifiability evaluated over the
whole test set (presented in the table) is slightly lower. These results show that rather than using
more precise abstractions on the input set to certify networks not trained to be provably robust, it is
more effective to explicitly train networks to be certifiably robust and verify them with a less pre-
cise but faster verifier (with a large number of parameter splits). Using our custom loss formulation
in Eq. 8 yields the best results on our verifier; Table 6 in Appendix E.1 shows that other existing
ℓ∞-based training methods (which cannot incorporate geometric bounds) do not perform as well.

5.2 SCALABILITY TO LARGER DATASETS AND MODELS

Table 2: Certified geometric robustness and accu-
racy on Tiny ImageNet networks. Certification is
performed with FGV.

Network Transforms Acc.
(%)

Cert.
(%)

Cert. Time
per Image (s)

CNN7
Shear (2%) 27.3 18.7 0.059
Scale (2%) 26.1 15.2 0.057
Rotate (5◦) 26.0 13.1 0.285

Wide
ResNet

Shear (2%) 35.5 25.7 0.214
Scale (2%) 33.1 21.3 0.205
Rotate (5◦) 32.2 17.4 1.006

Our work can scale to larger datasets
like Tiny ImageNet and a real-world au-
tonomous driving dataset where previous
approaches do not.

Table 2 presents our results on Tiny-
ImageNet networks trained for the shear,
scale, and rotation transformations. For
both networks, we observe that our ap-
proach preserves a relatively high clean ac-
curacy while obtaining substantial robust-
ness guarantees. For context, in Xu et al.
(2020) for ℓ∞-robustness with ϵ = 1/255,
they attain 21.6% accuracy and 12.7% cer-
tified robustness on CNN7 and 27.8% accu-
racy and 15.9% certified robustness on WideResNet. Certification time is still fast, even though the
images are much higher-definition than MNIST and CIFAR10, showcasing FGV’s scalability. We
also see that our approach scales well to large state-of-the-art models like WideResNet.
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Figure 1: Visualization of standard and certified steering angles for the CGT-trained network on
test-set driving scenes. Green line is the ground truth, blue line is the network prediction, and red
hue is the certified bound on the network’s prediction within ±2◦ rotation of the input.

Next, we demonstrate, to the best of our knowledge, the first study of a provable defense in a
real-world setting against realistic geometric transformations on the Udacity dataset. The neural
network takes as input high-definition RGB 3 × 66 × 200 images, and our task is to accurately
predict the correct steering angle and tightly and provably bound the range of angles under geometric
transformations. Specifically, we consider a transformation of ±2◦ rotation.

Table 3: Mean absolute error and certified bounds
(lower is better) for rotation range of ±2◦ on self-
driving networks.

Training
Method

Std.
MAE

Cert.
MAE

Cert.
Width

Cert. Time
per Image (s)

Regular 6.07◦ 97.56◦ 180◦ 0.11
Dropout 4.85◦ 96.65◦ 178◦ 0.12
CGT 5.36◦ 8.05◦ 5.43◦ 0.11

While there is an inherent tradeoff be-
tween certified robustness and network per-
formance on the previous datasets, we find
that, surprisingly, here we can scale our ap-
proach to obtain both high certifiability and
improve network performance at the same
time. To demonstrate this phenomenon, we
train a network with (1) just the regular
mean-squared error loss and input data aug-
mentation of ±2◦ rotation (Regular), (2) the
first method with the addition of dropout on
linear layers (Dropout), and (3) our CGT for-
mulation in Eq. 9.

Table 3 presents our results for the standard and certified errors of these training methods (lower is
better). An interesting observation is that this task is prone to overfitting: we can observe that adding
dropout significantly improves the standard error of the network. In this case, training with CGT’s
interval bounds actually acts as an effective regularizer that serves the dual purpose of combatting
overfitting and enforcing certifiability. Training without CGT leads to trivial certification bounds
(i.e., the certified steering angle can be anywhere in ±90◦); conversely, training with CGT yields
very tight certified bounds. Fig. 1 shows visualizations of the CGT-trained network’s predictions
and certified bounds.

5.3 ABLATION STUDIES

Algorithm for Interval Interpolated Transformation. In Appendix E.3, we compare Algorithm 1
to Semantify-NN’s algorithm for computing interval rotation bounds. We show that our algorithm
is orders of magnitude faster, hence enabling our scalable training and verification approaches.

Effect of Parameter Split Size. We train a CIFAR10 and Tiny ImageNet network with various sizes
of the hyperparameter ν and discuss how it affects certified and clean accuracy in Appendix E.2.

6 CONCLUSION

We proposed Certified Geometric Training (CGT), a provable defense that leverages a novel fast
geometric verifier to improve the deterministic certified robustness of neural networks with respect to
geometric transformations. Our experiments across multiple datasets and perturbation sets showed
that CGT consistently attains state-of-the-art certified deterministic geometric robustness and clean
accuracy, while being highly scalable.
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A EQUATIONS FOR INTERPOLATED TRANSFORMATIONS

For each interpolated transformation, we present the equation for its inverse transform T−1
θ , which

is used to instantiate Eq. 2.

Rotation. Parameterized by an angle φ ∈ [0, 2π]:

T−1
φ (u, v) =

[
cosφ sinφ
− sinφ cosφ

] [
u
v

]
=

[
u cosφ+ v sinφ
v cosφ− u sinφ

]
(10)

Translation. Parameterized by an amount of horizontal shift ∆u ∈ R and an amount of vertical shift
∆v ∈ R:

T−1
∆u,∆v(u, v) =

[
u−∆u
v −∆v

]
(11)

Scaling. Parameterized by a scaling factor λ ∈ R, λ > −1:

T−1
λ (u, v) =

[ 1
1+λ 0

0 1
1+λ

] [
u
v

]
=

[
u/(1 + λ)
v/(1 + λ)

]
(12)

Shearing. Parameterized by a horizontal shearing factor γ ∈ R:

T−1
γ (u, v) =

[
1 −γ
0 1

] [
u
v

]
=

[
u− γv

v

]
(13)

B INTERVAL BOUND PROPAGATION ABSTRACT TRANSFORMERS

Interval bound propagation (IBP) is a special case of linear relaxation-based perturbation analysis
(LiRPA), where each neuron’s bounds are hyperrectangles. Below, we give a recap on how to com-
pute the bounds for affine (i.e., convolutional and fully connected) layers and monotonic activation
functions from Gowal et al. (2019). For a more detailed discussion, we refer the reader to Gowal
et al. (2019) and Xu et al. (2020).

For a neuron (or pixel) z̃ = [z, z], its bounds after applying an affine layer with weights W and bias
b are computed as:

z̃out = [µ− r, µ+ r] (14)

where µ = W
( z+z

2

)
+ b and r = |W |

( z−z
2

)
.

For a neuron z̃ = [z, z], its bounds after applying a monotonic activation function h : R → R (e.g.,
ReLU) are computed as:

z̃out = [h(z), h(z)] (15)

We can obtain final bounds on a network’s outputs by composing the operations above and propa-
gating intervals from the input layer to the output layer.

C ADDITIONAL DETAILS ON FAST INTERVAL INTERPOLATED
TRANSFORMATIONS

C.1 RUNNING EXAMPLE

We present a running example of Algorithm 1. Here, we consider applying a scaling of λ̃ = ±2%
to 3× 3 images. Per Eq. 12, the inverse transform function for this perturbation is:

T−1

λ̃
(u, v) =

(
u

1 + [−0.02, 0.02]
,

v

1 + [−0.02, 0.02]

)
=

(
u

[0.98, 1.02]
,

v

[0.98, 1.02]

)
We color code the diagrams below, so that information belonging to the same pixel location has the
same color.
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Lines 2-4: First, we create a meshgrid of (u, v) coordinates so that the inverse transform of all
coordinates can be computed in parallel. We obtain:

U =

-1 0 1
-1 0 1
-1 0 1

and V =

1 1 1
0 0 0
-1 -1 -1

Line 5: Now, we apply T−1

λ̃
to each entry in U, V . Note that since T−1

λ̃
produces interval coordi-

nates, all subsequent operations need to be interpreted via interval arithmetic. We have:

Ũ ′ =
U

[0.98, 1.02]
=

[-1.02, -0.98] [0, 0] [0.98, 1.02]

[-1.02, -0.98] [0, 0] [0.98, 1.02]

[-1.02, -0.98] [0, 0] [0.98, 1.02]

Ṽ ′ =
V

[0.98, 1.02]
=

[0.98, 1.02] [0.98, 1.02] [0.98, 1.02]

[0, 0] [0, 0] [0, 0]

[-1.02, -0.98] [-1.02, -0.98] [-1.02, -0.98]

Lines 6-7: We can now compute the bilinear interpolation grid (i.e., all interpolation distances). For
each (ũ′, ṽ′) coordinate, we compute ũ′ −U and ṽ′ − V , which are both 3× 3 interval matrices. As
there are 9 inverse coordinates, we end up with two 9× 3× 3 interval tensors Ũd and Ṽd (where the
ordering of the first dimension is according to row-major order of ũ′, ṽ′). The rest of the operations
to compute the interpolation distances are all elementwise; we can thus obtain G̃ = max(0, 1 −
|Ṽd|) ⊙max(0, 1 − |Ũd|), shown below. We omit writing entries that are zero (i.e., the degenerate
interval [0, 0]).

[0.96, 1.00] [0.00, 0.02]
[0.00, 0.02] [0.00, 4e-4]

[0.98, 1.00]
[0.00, 0.02]

[0.00, 0.02] [0.96, 1.00]
[0.00, 4e-4] [0.00, 0.02]

[0.98, 1.00] [0.00, 0.02] [1.00, 1.00] [0.00, 0.02] [0.98, 1.00]

[0.00, 0.02] [0.00, 4e-4]
[0.96, 1.00] [0.00, 0.02]

[0.00, 0.02]
[0.98, 1.00]

[0.00, 4e-4] [0.00, 0.02]
[0.00, 0.02] [0.96, 1.00]

As discussed in Section 4.2, we can see that the region of interpolation is significantly different for
each pixel, hence in order to parallelize the entire computation across all inverse coordinates, we
must interpolate over the entire 3 × 3 range of (u, v) coordinates for each (ũ′, ṽ′). However, doing
so leads to a lot of sparsity in G̃, which we can now exploit. (With larger images, typically more than
99% of G̃ are zero entries; however, since the image dimension in this running example is small, the
sparsity is not as great.)

Lines 8-12: We now convert G̃ to our custom sparse format before performing interpolation with
image pixels, so that all zero-multiplications are eliminated. First, we count the number of nonzero
entries in each inverse coordinate’s matrix:

z = 4 2 4 2 1 2 4 2 4

Then, we flatten G̃ (in row-major order) and store it in a COO (coordinate) format. We thus obtain
an interval vector w̃ that stores all the nonzero interpolation distances, along with integer vectors r, c
which, for each value of w̃, stores its corresponding row and column index:

w̃ = [0.96, 1.00] [0.00, 0.02] [0.00, 0.02] [0.00, 4e-4] [0.98, 1.00] [0.00, 0.02] [0.00, 0.02] [0.96, 1.00] [0.00, 4e-4] [0.00, 0.02]

· · · [0.98, 1.00] [0.00, 0.02] [1.00, 1.00] [0.00, 0.02] [0.98, 1.00] [0.00, 0.02] [0.00, 4e-4] [0.96, 1.00] [0.00, 0.02] [0.00, 0.02]

· · · [0.98, 1.00] [0.00, 4e-4] [0.00, 0.02] [0.00, 0.02] [0.96, 1.00]
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r = 0 0 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 2 2 1 2 1 1 2 2

c = 0 1 0 1 1 1 1 2 1 2 0 1 1 1 2 0 1 0 1 1 1 1 2 1 2

This concludes the procedure MakeInterpGrid(), and we are now ready to use this infor-
mation to compute actual interpolated images. Consider a batch of 1000 3 × 3 RGB images,
X ∈ [0, 1]1000×3×3×3. Now, consider the first channel of the first image, X[0, 0], which is a 3 × 3
matrix (whose values we randomly select for this example):

X[0, 0] =

.55 .50 .42

.53 .49 .51

.56 .62 .45

Line 18: We multiply each interpolation distance with the pixel value of X[0, 0] in the corresponding
location; this will yield the values of all summands in Eq. 1 across all pixels. To accomplish this, we
index the image according to the indices stored in (r, c) and elementwise multiply these pixel values
with w̃, obtaining S̃ = w̃ ⊙X[0, 0, r, c]:

S̃ = [0.53, 0.55] [0.00, 0.01] [0.00, 0.01] [0.00, 2e-4] [0.49, 0.50] [0.00, 0.01] [0.00, 0.01] [0.40, 0.42] [0.00, 2e-4] [0.00, 0.01]

· · · [0.52, 0.53] [0.00, 0.01] [0.49, 0.49] [0.00, 0.01] [0.50, 0.51] [0.00, 0.01] [0.00, 2e-4] [0.54, 0.56] [0.00, 0.01] [0.00, 0.01]

· · · [0.61, 0.62] [0.00, 2e-4] [0.00, 0.01] [0.00, 0.01] [0.43, 0.45]

Line 19: Finally, we sum the terms in S̃ that belong to the same pixel location. In the context of the
diagram above, this is summing the entries in S̃ that are of the same color. In practice, this color
information is encoded in the vector z, which stores, for each pixel location, the number of nonzero
interpolation entries; hence, we break S̃ into contiguous chunks such that the length of chunk i
(where 0 ≤ i < 9) is given by zi, and sum all values in each chunk, obtaining:

X̃ ′
f = [0.53, 0.57] [0.49, 0.51] [0.40, 0.44] [0.52, 0.54] [0.49, 0.49] [0.50, 0.52] [0.54, 0.58] [0.61, 0.63] [0.43, 0.47]

Line 20: This vector is then reshaped to a 3 × 3 matrix, yielding the final pixel values of X[0, 0]
under transformation:

X̃ ′ =

[0.53, 0.57] [0.49, 0.51] [0.40, 0.44]

[0.52, 0.54] [0.49, 0.49] [0.50, 0.52]

[0.54, 0.58] [0.61, 0.63] [0.43, 0.47]

Finally, we remark that this interpolation process is completely independent for each batch and
channel. Therefore, to parallelize across multiple images and channels, we simply need to index
across all batch and channel dimensions when computing S̃ (i.e., let S̃ = w̃ ⊙X[:, :, r, c]).

C.2 PADDING STRATEGY

To handle other padding techniques (e.g., replicating the border pixels of the in-frame part of the
image), our core algorithm remains completely unchanged – all that is needed is a preprocessing
step that pads the input image according to the desired padding strategy, and a postprocessing step
that crops the output back to the original dimensions. We describe these steps in detail below.

Let us assume we have a batch of H×W images X , an interpolated transformation Tθ̃, and a desired
padding mode strategy by which to fill in the areas of the interpolated images with no source
pixel. First, we determine the number of pixels by which to pad the original H×W images. To do so,
we compute the meshgrid (U, V ) and the inverse coordinates (Ũ ′, Ṽ ′) as in 1 in Algorithm 1. Then,
the amount of padding required is p = ⌈max{|min Ũ ′ − minU |, |max Ũ ′ − maxU |, |min Ṽ ′ −
minV |, |max Ṽ ′ − maxV |}⌉. In other words, the padding amount is the integer just greater than
the maximum distance from a u or v coordinate on the border to its inverse counterpart; this ensures
that after padding, none of the central H × W pixels will have a value of zero after interpolation.
Now, we pad X on all sides by p pixels according to strategy. This padded batch of images can
then be directly fed into Algorithm 1 to obtain a batch of transformed interval images X̃ ′. Finally,
to obtain transformed images in the original dimensions, we take a central H ×W crop of X̃ ′.
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D ADDITIONAL EXPERIMENTAL DETAILS

D.1 NETWORK ARCHITECTURES

We detail the network architecture(s) used for each dataset below. We express a convolutional layer
as a 4-tuple of (number of filters, kernel size, stride, padding).

• MNIST: 2 conv layers {(32, 4, 2, 1), (64, 4, 2, 1)} followed by 2 linear layers with
{200, 10} neurons. All layers are followed by a ReLU activation, except for the final
output layer.

• CIFAR10: 3 conv layers {(32, 3, 1, 1), (32, 4, 2, 1), (64, 4, 2, 1)} followed by 2 linear lay-
ers with {150, 10} neurons. All layers are followed by a ReLU activation, except for the
final output layer.

• Tiny ImageNet:
– CNN7: 5 conv layers {(64, 3, 1, 1), (64, 3, 1, 1), (128, 3, 2, 1), (128, 3, 1, 1), (128, 3,
2, 1)} followed by 2 linear layers with {512, 200} neurons. Each conv layer is fol-
lowed by a batch norm layer then a ReLU activation. The first linear layer is followed
by a ReLU activation.

– WideResNet: Let Qx(pi, po, s) denote the output after feeding x through this se-
quence of layers: batch norm with pi features, ReLU, conv(po, 3, 1, 1), batch norm
with po features, ReLU, conv(po, 3, s, 1); let Sx(pi, po, s) denote the output after
feeding x into a conv(po, 1, s, 0). Then, we define a wide basic block as the func-
tion Wx(pi, po, s) = Qx(pi, po, s) + Sx(pi, po, s). The architecture of the network
is then: a conv layer (16, 3, 1, 1), Wx(16, 160, 1), Wx(160, 320, 2), Wx(320, 640, 2),
batch norm, ReLU, average pooling with a 7×7 kernel, then finally a linear layer with
200 neurons.

• Driving: 5 conv layers {(24, 5, 2, 0), (36, 5, 2, 0), (48, 5, 2, 0), (64, 3, 1, 0), (64, 3, 1, 0)}
followed by 4 linear layers with {100, 50, 10, 1} neurons. All layers are followed by a
ReLU activation, except for the final output layer. For the Dropout network, we add a
dropout layer with p = 0.5 after the first 3 linear layers.

D.2 ADDITIONAL TRAINING DETAILS

Training Schedule. We train the MNIST networks for 100 epochs with batch size 256, CIFAR10
networks for 120 epochs with batch size 128, Tiny ImageNet networks for 160 epochs with batch
size 128 (CNN7) or 400 (WideResNet), and the self-driving network for 50 epochs with batch size
128. For the classifiers, we first train with only the cross-entropy loss during a warm-up period; we
warm up for 15 epochs on MNIST and 30 epochs on CIFAR10 and Tiny ImageNet. For the self-
driving network, we directly use Eq. 9 from the start. In order to ensure convergence for the loss, we
linearly decay κ from 1 to κf = 0.5 and employ a linear ramp-up schedule to slowly increase the
value of ν from 0 up to a final parameter size of νf ; we ramp up across 50, 60, 80, and 50 epochs
for MNIST, CIFAR10, Tiny ImageNet, and self-driving, respectively. We explain how to tune the
hyperparameter νf and provide the values of νf for each experiment in Section D.4.

Data Preprocessing and Augmentation. For all networks, we augment the input images during
training according to the set of transformations to which we want to be robust. In addition, for
CIFAR10 and Tiny ImageNet, we also perform random horizontal flips and select random crops of
32 × 32 with padding 4 (for CIFAR10) and random crops of 56 × 56 (for Tiny ImageNet). At test
time, we use a central crop of 56× 56 for Tiny ImageNet. For the self-driving dataset, we first crop
the top of the 480 × 640 input images to 280 × 640, then resize them with bilinear interpolation
to 66 × 200; we also perform random horizontal flips. For all datasets, we normalize input images
according to the channel statistics from the train set immediately before the first network layer.

Optimizer. We use the Adam optimizer (Kingma & Ba, 2015) across all networks. For MNIST
and CIFAR10, we use an initial learning rate of 10−3, which we decay by 0.1 at the 80th and 100th
epoch, respectively. For Tiny ImageNet, we use an initial learning rate of 5×10−4, which we decay
by 0.1 after 120 and 150 epochs. For self-driving, we use an initial learning rate of 10−3, which we
decay by 0.1 after 20 and 40 epochs. For all networks, we clip gradients at an ℓ2-norm of 8.
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Table 4: Interval sizes of geometric transformation parameters used during training and certification.
For experiments with compositions of transformations, the sizes are specified in the same order as
the transformations.

Dataset Perturbations Perturbation parameter interval size

Training (2νf ) Certification (θk − θk)

MNIST

R(30) 0.5 0.25
Tu(2), Tv(2) (0.1, 0.1) (0.05, 0.05)
Sc(5), R(5), C(5), B(0.01) (1, 0.25, 5, 0.02) (0.5, 0.125, 5, 0.02)
Sh(2), R(2), Sc(2), C(2), B(0.001) (0.5, 0.125, 0.5, 4, 0.002) (0.25, 0.0625, 0.25, 4, 0.002)

CIFAR10
R(10) 0.001 0.0002
R(2), Sh(2) (0.02, 0.05) (0.01, 0.025)
Sc(1), R(1), C(1), B(0.001) (0.005, 0.005, 0.5, 0.002) (0.005, 0.005, 0.5, 0.002)

Tiny
ImageNet

Sh(2) 0.01 0.002
Sc(2) 0.01 0.002
R(5) 0.005 0.001

Driving R(2) 0.004 0.001

Table 5: Average and maximum pixel interval widths of geometrically transformed images used for
training (for CGT networks) and certification (for all networks).

Dataset Perturbations Training Interval Width Certification Interval Width

Average Maximum Average Maximum

MNIST

R(30) 0.019 0.234 0.010 0.124
Tu(2), Tv(2) 0.041 0.334 0.022 0.181
Sc(5), R(5), C(5), B(0.01) 0.043 0.356 0.031 0.223
Sh(2), R(2), Sc(2), C(2), B(0.001) 0.022 0.253 0.015 0.153

CIFAR10
R(10) 2.67× 10−4 8.53× 10−4 5.38× 10−5 1.71× 10−4

R(2), Sh(2) 8.94× 10−3 2.82× 10−2 4.52× 10−3 1.42× 10−2

Sc(1), R(1), C(1), B(0.001) 6.37× 10−3 1.26× 10−2 6.37× 10−3 1.26× 10−2

Tiny
ImageNet

Sh(2) 1.21× 10−3 4.90× 10−3 2.44× 10−4 9.82× 10−4

Sc(2) 2.39× 10−3 8.76× 10−3 4.81× 10−4 1.76× 10−3

R(5) 2.15× 10−3 7.88× 10−3 8.63× 10−4 3.17× 10−3

Driving R(2) 2.82× 10−3 1.51× 10−2 7.71× 10−4 4.00× 10−3

D.3 ADDITIONAL CERTIFICATION DETAILS

Batch Size. We use a batch size of 10,000, 10,000, 2,000, 400, and 3,000 during the certification of
MNIST, CIFAR10, Tiny ImageNet CNN7, Tiny ImageNet WideResNet, and self-driving networks,
respectively.

Parameter Splits. To ensure precise certification, we select parameter splits that are 1-5× smaller
in width than those used during training. The certification configurations for each experiment can
be found in Section D.4.

D.4 PARAMETER INTERVAL SIZES

In Table 4, we show the interval sizes of the geometric perturbation parameters that we use during
training and certification for all experiments. In the Training column, we present the final (i.e., after
ramp-up) interval size of each perturbation parameter used during training. Since we enforce a local
geometric ball of up to ±νf in Eqs. 8 and 9, the interval size of this ball is 2νf (where νf is the final
parameter interval size after ramp-up, as discussed in Section D.2). In the Certification column,
we present the interval size of each split used during robustness certification. For experiments with
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multiple perturbations, the ordering of the sizes corresponds with the ordering of the transformations
in the Perturbations column.

We describe below the procedure to obtain the values of νf shown in Table 4:

1. For a given set of n perturbations P with interval parameter ranges θ̃ = [θ, θ], we first start
with an arbitrary νf such that νf i < θi − θi for all 1 ≤ i ≤ n.

2. Then, we uniformly sample 10 random scalar parameter values {θk}10k=1 (where each θk ∼
U(θ, θ) as in Eqs. 8 and 9) and compute, over all train set images X ∈ [0, 1]N×C×H×W ,
the maximum pixel interval width of each image under perturbation of P with parameters
θk ± νf :

Mk = {maxX ′
i}Ni=1 where X ′ = P (X, θk ± νf ) (16)

given X ′
i denotes the ith perturbed image in the train set. Essentially, in this step we are

converting interval sizes in parameter space to pixel space to gauge the amount of over-
approximation in the computed bounds (as it is the pixel’s intervals that are ultimately
propagated through the network). Now, we calculate the average maximum pixel interval
width over all images and parameter samples, obtaining µ = mean{mean Mk}10k=1.
We find that selecting νf such that µ is close to typical values of ϵ used in the ℓ∞-norm
setting (e.g., 0.2 and 0.4 for MNIST, 4/255 and 8/255 for CIFAR10) yields both accurate
and certifiable networks. If µ > ϵ, then we reduce νf (hence reducing the amount of
over-approximation) and recompute this step until µ ≈ ϵ. Note that this tuning requires no
training, and µ can be computed in under a minute for all the datasets that we consider.

3. Once appropriate values of νf have been determined from step (2), we can proceed to use
them in training. We perform a 80-20 train-validation split of the train set, and use CGT
to train a network to completion. If the validation accuracy and robustness are sufficiently
high, then no further tuning is required. Else, we reduce νf and repeat this step. We only
had to do this step a few times, as the calculation of the pixel widths already provided a
good heuristic for network performance.

After determining the appropriate parameter sizes during training time, selecting the certification
split sizes is straightforward. We empirically find that selecting parameter sizes that are 2× smaller
than those used during training yields a good balance between certification rate and runtime. If faster
certification time is desired, one can use the same parameter sizes at both training and certification
time (as we do in the CIFAR10 experiment with scaling, rotation, contrast, and brightness). If higher
certification rate is desired, one can use parameter sizes that are even smaller, at the cost of higher
runtime (e.g., we find 5× to be effective for Tiny ImageNet, while using parameter sizes that are
even smaller has diminishing returns and does not appreciably increase certification rate).

Table 5 shows the maximum pixel interval width during training and certification for each experi-
ment. Additionally, we also show the average pixel interval width (i.e., Eq. 16 with the max oper-
ation replaced by mean) to demonstrate that geometric transformations produce highly nonuniform
bounds, further motivating why supplying precise geometric bounds during training is crucial to
achieving networks that are both accurate and certifiable.

E ADDITIONAL RESULTS

E.1 TRAINING METHODS

To demonstrate the benefit of our loss function, we compare CGT with three baseline training meth-
ods: (1) data augmentation, denoted Augment.; (2) augmentation with PGD (Madry et al., 2018),
denoted PGD+A; and (3) augmentation with IBP (Gowal et al., 2019), denoted IBP+A. We select
these baselines because, to the best of our knowledge, they are the only training methods utilized
in existing works on deterministic geometric robustness (as no work incorporates precise geometric
regions into training as we do). For (1), the loss function is simply the cross-entropy loss, with input
images augmented according to the perturbations we are trying to certify. For (2), we use PGD
to generate adversarial examples of the augmented images. For (3), we employ the IBP loss, with
interval ϵ-balls placed around the augmented images.
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Table 6: Comparison of training methods on the MNIST translation (left) and CIFAR10 rotation
(right) benchmarks.

Training
Method

Accuracy
(%)

Certified
(%)

Time per
Epoch (s)

Max GPU
Mem. (MB)

CGT 99.2 89.8 3.25 116.3
IBP+A 98.5 82.6 2.53 116.2
PGD+A 99.4 0 16.6 67.07
Augment. 99.4 0 1.50 64.76

Training
Method

Accuracy
(%)

Certified
(%)

Time per
Epoch (s)

Max GPU
Mem. (MB)

CGT 80.5 63.2 6.06 236.2
IBP+A 62.2 46.4 5.44 235.3
PGD+A 76.7 38.8 7.48 83.26
Augment. 83.7 0.04 5.13 74.38

Table 6 shows these comparisons on the MNIST translation and CIFAR10 rotation benchmarks. For
the PGD and IBP-based baselines, we select ϵ = 0.1 and ϵ = 2/255 for MNIST and CIFAR10,
respectively, which are commonly used in the literature (Balunovic et al., 2019; Gowal et al., 2019;
Zhang et al., 2020). For PGD, we use a step size of 0.005 and 40 steps for MNIST and a step
size of 0.002 and 7 steps for CIFAR10. When calculating the time and memory statistics for CGT
and IBP+A, we only consider the epochs after warm-up (i.e., when we start computing the interval
robustness loss term). We can observe that our approach, which can supply precise bounds that
correspond to the geometric perturbations we are trying to certify, is able to attain the best certified
accuracy while maintaining high clean accuracy and only using slightly more time and memory
compared to the other approaches.

E.2 EFFECT OF HYPERPARAMETER ν

Table 7: Variation of clean and certified accuracy as a function of νf . c is the certification interval
size, νo is the value of νf used in our main results, and g = νo − c.

Benchmark Accuracy
Type

νf

c c+ g
2

νo νo +
g
2

νo + g

CIFAR10
R(2), Sh(2)

Certified 45.6 49.8 51.0 51.7 50.8
Clean 73.5 71.8 70.1 69.8 66.6

Tiny ImageNet
Sc(2)

Certified 9.4 13.6 15.2 16.0 16.5
Clean 28.5 26.9 26.1 25.4 25.2

As the size of the local geometric ball (controlled by ν) is a key training hyperparameter of our loss
function in Eq. 8, we conduct an ablation study on a CIFAR10 network and Tiny ImageNet CNN7
on how varying νf (i.e., the final parameter interval size after ramp-up, as discussed in Section D.2)
affects the certified and clean accuracies of CGT-trained networks. Table 7 presents these results.
In addition to the original value of νf used in our benchmarks in Sections 5.1 and 5.2 (denoted νo),
we select four additional settings for νf and train with CGT for each of these values. We choose the
smallest νf to be equal to the interval size at certification time, c, and the largest νf to be equal to c
plus two times the difference between νo and c. We certify all networks with the original size of c.

We can observe that generally, larger values of νf lead to increased certified accuracy, at the cost of
decreased clean accuracy. CGT thus allows one to explicitly tune the tradeoff between these metrics
by varying νf . The notable exception to this trend is the CIFAR10 network with the largest νf ; in
this case, using a νf that is excessively large actually decreases certified robustness (since the clean
accuracy drops considerably). There are diminishing returns to using larger intervals during training:
while the certified accuracy increases significantly when using νf = νo compared to νf = c, further
increasing the size to νf = νo + g/2 or above only slightly increases certifiability.

E.3 SPEED OF INTERVAL INTERPOLATED TRANSFORMATION ALGORITHM

We demonstrate why FGV is a necessary component of our framework. Table 8 presents the com-
parison of Algorithm 1 to the state-of-the-art algorithm for computing interval geometric bounds in
Semantify-NN (Mohapatra et al., 2020), which is sequential and CPU-only. To compute interval
rotation bounds for a batch of training images (256 for MNIST and 128 for CIFAR10 and Tiny
ImageNet), we are 8,000-20,000× faster. Our end-to-end speedup when combining both the input
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Table 8: Time to compute interval rotation bounds and network outputs for one batch of images.

Dataset Time to Compute Bounds (s) Our Speedup Time to Propagate
Bounds (s)

End-to-End
SpeedupSemantify-NN Ours

MNIST 33.10 0.0029 11250× 0.0037 4974×
CIFAR10 22.81 0.0026 8645× 0.0043 3293×
Tiny ImageNet 62.83 0.0030 20610× 0.0179 3003×

Table 9: Time to compute interval rotation bounds for one batch of images, with our method running
on the CPU and with batch size 1.

Dataset Semantify-NN (s) Ours CPU (s) Our Speedup

MNIST 33.10 0.25 135×
CIFAR10 22.81 0.11 200×
Tiny ImageNet 62.83 0.28 221×

geometric perturbation bound computation and the propagation of these bounds through the network
is 3,000-5,000×. For Tiny ImageNet, we use the CNN7 network in this experiment. These results
show that without Algorithm 1, the overhead during training is too high to use our proposed loss
functions in Eqs. 8 and 9.

As an ablation study, we run our algorithm under the same conditions as Semantify-NN’s – on the
CPU and with a batch size of 1. As seen in Table 9, our runtime is still 100-200× faster than
Semantify-NN’s. These results show that our speedup is not only due to the ability to leverage
GPU hardware, but also due to fundamental algorithmic improvements that allow the computation
of interpolated transformations to be efficiently parallelized.

E.4 TRAINING STATISTICS

Table 10 shows the training statistics of runtime per epoch and GPU memory usage for all of our
networks. When calculating the time and memory statistics, we only consider the epochs after
warm-up (i.e., when we start computing the interval robustness loss term).

Table 10: Training runtime and GPU memory usage for all our benchmarks.

Network Perturbations Time per Epoch (s) Max GPU Memory (MB)

MNIST

R(30) 3.46 116.3
Tu(2), Tv(2) 3.25 116.3
Sc(5), R(5), C(5), B(0.01) 3.46 116.3
Sh(2), R(2), Sc(2), C(2), B(0.001) 3.53 116.3

CIFAR10
R(10) 6.06 236.2
R(2), Sh(2) 6.02 236.3
Sc(1), R(1), C(1), B(0.001) 6.11 237.3

Tiny ImageNet
CNN7

Sh(2) 48.8 4362
Sc(2) 48.9 4362
R(5) 48.9 4361

Tiny ImageNet
WideResNet

Sh(2) 98.2 34143
Sc(2) 98.1 34143
R(5) 98.8 34143

Driving R(2) 11.7 3428
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