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Regression: Certified bounds

Objective

Interval Bound Propagation

∀𝑥′ ∈ 𝑋′. 𝑦 = argmax
𝑖

𝑓𝑖 𝑥
′

𝑦 ≤ min
𝑥′∈𝑋′
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𝑥′∈𝑋′

𝑓(𝑥′) ≤ 𝑦

𝑥

Perturbation Conv2D ReLU

⋯

Linear 

[𝑓 𝑥 , 𝑓 𝑥 ]𝑥 = [𝑥, 𝑥] ⊇ 𝑋′

Classification: ∀𝑗 ≠ 𝑦. 𝑓𝑦 𝑥 > 𝑓𝑗( 𝑥) Regression: directly use output bounds

Dataset Time to Compute 
Bounds (s)

Time to Propagate 
Bounds (s)

CIFAR-10 22.81 0.004

Tiny ImageNet 62.83 0.018

Computing Geometric Bounds Is Costly  

Geometric Certification Requires Splitting 

Fast Geometric Verifier

𝑖′, 𝑗′ = 𝑇−1𝜃 𝑖, 𝑗 (𝑖, 𝑗)

Scale up

𝑛

𝑚

Regular Interval

Challenges

Experimental Evaluation

MNIST

Transformations Network Accuracy 
(%)

Certified 
(%)

Certification Time 
per Image (s)

Our 
Speedup

Rotate(30°)
DeepG 99.1 86.0* 19.12 −

Ours 99.1 94.2 0.00045 42623×

TranslateH(2), TranslateV(2)
DeepG 99.1 77.0* 367.82 −

Ours 99.2 89.8 0.0090 40949×

Scale(5%), Rotate(5°), 
Contrast(5%), Brightness(.01)

DeepG 99.3 34.0* 155.24 −

Ours 99.1 92.6 0.0048 32563×

Shear(2%), Rotate(2°), 
Scale(2%),   Contrast(2%),
Brightness(.001)

DeepG 99.2 72.0* 71.72 −

Ours 99.1 96.3 0.024 2933×

Transformations Network Accuracy 
(%)

Certified 
(%)

Certification Time 
per Image (s)

Our 
Speedup

Rotate(10°)
DeepG 71.2 65.0* 78.18 −

Ours 80.5 63.2 0.465 168×

Rotate(2°), Shear(2%)
DeepG 68.5 39.0* 18.92 −

Ours 70.1 51.0 0.263 72×

Scale(1%), Rotate(1°), 
Contrast(1%), Brightness(.001)

DeepG 73.2 43.0* 163.26 −

Ours 71.3 42.3 2.725 60×

Tiny ImageNet

Network Transforms Accuracy 
(%)

Certified 
(%)

Certification Time 
per Image (s)

CNN7

Shear(2%) 27.3 18.7 0.059

Scale(2%) 26.1 15.2 0.057

Rotate(5°) 26.0 13.1 0.285

Wide
ResNet

Shear(2%) 35.5 25.7 0.214

Scale(2%) 33.1 21.3 0.205

Rotate(5°) 32.2 17.4 1.006

Training 
Method

MAE
Certified 

MAE
Certification Time 

per Image (s)

Regular 6.07° 97.56° 0.11

Dropout 4.85° 96.65° 0.12

Ours 5.36° 8.05° 0.11

Green: ground truth label 
Blue: network prediction 
Red: certified bound 
under rotation of ±2°

Certified training can help 
network performance; 
enforcing robustness while 
regularizing the network! 

Illustration of Interpolated Transformations 

𝑥′𝑖,𝑗 = 

𝑛=0

𝐻−1



𝑚=0

𝑊−1

𝑥𝑛,𝑚 ⋅ max 0, 1 − 𝑖′ − 𝑛 ⋅max 0, 1 − 𝑗′ −𝑚

Summands with both terms < 1 contribute to sum

To compute the value of each pixel in 
the transformed image:
1. Compute its coordinate in the 

original image via 𝑇−1

2. Interpolate values of nearby pixels 

Algorithm and Running Example 
Key insight: Precompute interpolation distances and store in custom sparse representation

① Inverse Coordinates ② Interpolation Grid ③ Exploiting Sparsity ④ Obtaining Final Images

Example. Consider a 3 × 3 image and scaling by ෨𝜃 = ±2%: 𝑇−1෩𝜃 (𝑢, 𝑣) =
𝑢

0.98, 1.02
,

𝑣

0.98, 1.02

①

②

③

④

Interpolation distance 𝑑𝑛,𝑚
𝑖,𝑗

example image

Achieves 𝟑𝟎𝟎𝟎 − 𝟓𝟎𝟎𝟎 × speedup over current 
sequential algorithm for a batch of images!

Geometric Provable Defense Formulation

𝑥 = 𝑃 𝑥, ෨𝜃 𝑥1 = 𝑃 𝑥, ෨𝜃1 𝑥𝐾 = 𝑃 𝑥, ෨𝜃𝐾

⋯

Classification

∀𝑘 ∈ 1, 2,… , 𝐾 . ∀𝑗 ≠ 𝑦. 𝑓𝑦 𝑥𝑘 > 𝑓𝑗( 𝑥𝑘)

Bounds are too over-approximate Precision increases after splitting parameter range

𝜃 𝜃

𝜃 ∼ 𝒰(𝜃, 𝜃)

𝜃 − 𝜈 𝜃 + 𝜈

Local parameter split ෨𝜃𝑙

Existing formulations [worst-case loss over entire perturbation region]

ℓ መ𝑓 𝑥 , 𝑦 where መ𝑓𝑦 = 𝑓𝑦 and ∀𝑗 ≠ 𝑦. መ𝑓𝑗 = 𝑓𝑗

Our formulation [worst-case loss over small, sampled regions]

To enforce robustness to 𝑃 across entire parameter range ෨𝜃 = 𝜃, 𝜃 :

Classification:

ℓ መ𝑓 𝑃 𝑥, ෨𝜃𝑙 , 𝑦

Regression:

1

2
⋅ ℓ 𝑓 𝑃 𝑥, ෨𝜃𝑙 , 𝑦 + ℓ 𝑓 𝑃 𝑥, ෨𝜃𝑙 , 𝑦

No prior results in geometric setting. In ℓ∞-norm setting with 𝜖 =
1

255
, Xu et al., 2020 attain 21.6%

clean / 12.7% certified accuracy on CNN7 and 27.8% clean / 15.9% certified accuracy on WideResNet.

Comparison with the State of the Art

We compare 3-layer MNIST CNNs and 4-layer CIFAR-10 CNNs trained and certified with our framework 
with those in DeepG (Balunovic et al., 2019), the SOTA for deterministic geometric certified robustness. 
* denotes DeepG results over 100 test images (since it takes too long to run on the full test set).

CIFAR-10

Scalability to Larger Datasets

Udacity Self-Driving

Must compute geometric bounds many times + account for splitting in training

Regression

Interval interpolation 
has no data regularity; 
not GPU-parallelizable as-is!

Hyperparameter controlling 
amount of over-approximation

𝑥 𝑥 𝑥1 𝑥1 𝑥𝐾 𝑥𝐾

𝑘=1ڂ
𝐾 𝑓 𝑥𝑘
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