Provable Defense Against Geometric Transformations

Rem Yang, Jacob Laurel, Sasa Misailovic, Gagandeep Singh

Correctly classified

х

Perturbed: misclassified

Correctly classified

 δ where $\|\delta\|_p < \epsilon$ $x + \delta$

Perturbed: misclassified

Correctly classified

 ℓ_p perturbations

+

Scaling

 δ where $\|\delta\|_p < \epsilon$ $x + \delta$

Geometric transformations

=

Rotation

Shearing

Contrast

Brightness

 $\boldsymbol{\chi}$

Perturbed: misclassified

х

Certified Robustness

Certified Robustness

Certified Robustness

Geometric Robustness Verification

Probabilistic

(Fischer et al., 2020; Hao et al., 2022; Li et al., 2021)

Deterministic

(Balunovic et al., 2019; Mohapatra et al., 2020)

Scales to larger datasets

Only scaled up to CIFAR-10

Large inference overhead

No inference overhead

Geometric Robustness Verification

Probabilistic (Fischer et al., 2020; Hao et al., 2022; Li et al., 2021)	Deterministic (Balunovic et al., 2019; Mohapatra et al., 2020)
Scales to larger datasets	Only scaled up to CIFAR-10
Large inference overhead	No inference overhead

Geometric Robustness Verification

Probabilistic (Fischer et al., 2020; Hao et al., 2022; Li et al., 2021)	Deterministic (Balunovic et al., 2019; Mohapatra et al., 2020)
Scales to larger datasets	Only scaled up to CIFAR-10
Large inference overhead	No inference overhead

These works only verify networks not explicitly trained to be provably robust

Provable Defense

Provable Defense

Provable Defense

 $\boldsymbol{\chi}$

6

Classification: $\underline{f_y}(\tilde{x}) > \overline{f_j}(\tilde{x}) \ \forall j \neq y$

Classification: $\underline{f_y}(\tilde{x}) > \overline{f_j}(\tilde{x}) \forall j \neq y$

Regression: directly use obtained bounds

Classification: $f_y(\tilde{x}) > \overline{f_j}(\tilde{x}) \forall j \neq y$

Regression: directly use obtained bounds

Existing works* only handle perturbations with simple formulas, e.g., $\tilde{x} = [x - \epsilon, x + \epsilon]$

* (Gowal et al., 2019; Mirman et al., 2018; Xu et al., 2020; Zhang et al., 2020)

Dataset	Time to Propagate Bounds (s)
CIFAR-10	0.004
Tiny ImageNet	0.018

Dataset	Time to Compute Bounds (s)	Time to Propagate Bounds (s)
CIFAR-10	22.81	0.004
Tiny ImageNet	62.83	0.018

Dataset	Time to Compute Bounds (s)	Time to Propagate Bounds (s)
CIFAR-10	22.81	0.004
Tiny ImageNet	62.83	0.018

Need faster way to compute geometric perturbation bounds on GPU

Define geometric transformation $P: \mathbb{R}^{C \times H \times W} \times \mathbb{R}^{|\theta|} \to \mathbb{R}^{C \times H \times W}$ and interval range of parameters $\tilde{\theta} = [\underline{\theta}, \overline{\theta}]$

Define geometric transformation $P: \mathbb{R}^{C \times H \times W} \times \mathbb{R}^{|\theta|} \to \mathbb{R}^{C \times H \times W}$ and interval range of parameters $\tilde{\theta} = [\underline{\theta}, \overline{\theta}]$

Define geometric transformation $P: \mathbb{R}^{C \times H \times W} \times \mathbb{R}^{|\theta|} \to \mathbb{R}^{C \times H \times W}$ and interval range of parameters $\tilde{\theta} = [\underline{\theta}, \overline{\theta}]$

Define geometric transformation $P: \mathbb{R}^{C \times H \times W} \times \mathbb{R}^{|\theta|} \to \mathbb{R}^{C \times H \times W}$ and interval range of parameters $\tilde{\theta} = [\theta, \overline{\theta}]$

Classification: $\underline{f_y}(\tilde{x}_k) > \overline{f_j}(\tilde{x}_k) \ \forall j \neq y \ \forall k \in \{1, 2, ..., K\}$

Define geometric transformation $P: \mathbb{R}^{C \times H \times W} \times \mathbb{R}^{|\theta|} \to \mathbb{R}^{C \times H \times W}$ and interval range of parameters $\tilde{\theta} = [\theta, \overline{\theta}]$

Classification: $\underline{f_y}(\tilde{x}_k) > \overline{f_j}(\tilde{x}_k) \ \forall j \neq y \ \forall k \in \{1, 2, ..., K\}$ **Regression:** $\bigcup_{k=1}^K \{f(\tilde{x}_k)\}$

Define geometric transformation $P: \mathbb{R}^{C \times H \times W} \times \mathbb{R}^{|\theta|} \to \mathbb{R}^{C \times H \times W}$ and interval range of parameters $\tilde{\theta} = [\theta, \overline{\theta}]$

Classification: $\underline{f_y}(\tilde{x}_k) > \overline{f_j}(\tilde{x}_k) \ \forall j \neq y \ \forall k \in \{1, 2, ..., K\}$ **Regression:** $\bigcup_{k=1}^K \{f(\tilde{x}_k)\}$

Need to account for splitting in training formulation

Certified Geometric Training (CGT)

Certified Geometric Training (CGT)

• Fast Geometric Verifier (FGV)

Certified Geometric Training (CGT)

- Fast Geometric Verifier (FGV)
- First provable training formulation for deterministic geometric robustness
Main Contributions

Certified Geometric Training (CGT)

- Fast Geometric Verifier (FGV)
- First provable training formulation for deterministic geometric robustness

Key Empirical Results

Main Contributions

Certified Geometric Training (CGT)

- Fast Geometric Verifier (FGV)
- First provable training formulation for deterministic geometric robustness

Key Empirical Results

• Deterministic geometric certification $60 - 42,000 \times faster$ than the SOTA

Main Contributions

Certified Geometric Training (CGT)

- Fast Geometric Verifier (FGV)
- First provable training formulation for deterministic geometric robustness

Key Empirical Results

- Deterministic geometric certification $60 42,000 \times faster$ than the SOTA
- Scales beyond CIFAR-10 to Tiny ImageNet and Udacity Self-Driving datasets

Computing Coordinate in Original Image

Scale up

Computing Coordinate in Original Image

Scale up

Computing Coordinate in Original Image

Coordinates Are Not Integers

 \boldsymbol{m}

$$x'_{i,j} = \sum_{n=0}^{H-1} \sum_{m=0}^{W-1} x_{n,m} \cdot \max(0, 1 - |i' - n|) \cdot \max(0, 1 - |j' - m|)$$

Interval Interpolation

Interval Interpolation

×	×	×	×
×	×	×	×
×	×	×	×
×	×	×	×

Interpolation region for a different $(\tilde{i'}, \tilde{j'})$

Interval Interpolation

Interpolation region for a different $(\tilde{i'}, \tilde{j'})$

Each pixel's interpolation bounds differ; not GPU-parallelizable!

How do we GPU-parallelize interval interpolation?

How do we GPU-parallelize interval interpolation?

Fast Geometric Verifier

$$\tilde{x}'_{i,j} = \sum_{n=\lfloor \underline{i'} \rfloor}^{\lceil \overline{i'} \rceil} \sum_{m=\lfloor \underline{j'} \rfloor}^{\lceil \overline{j'} \rceil} x_{n,m} \cdot \max(0, 1 - \left| \overline{i'} - n \right|) \cdot \max(0, 1 - \left| \overline{j'} - m \right|)$$

$$\tilde{x}'_{i,j} = \sum_{n=0}^{H-1} \sum_{m=0}^{W-1} x_{n,m} \cdot \max(0, 1 - |\tilde{i}' - n|) \cdot \max(0, 1 - |\tilde{j}' - m|)$$

$$\tilde{x}'_{i,j} = \sum_{n=0}^{H-1} \sum_{m=0}^{W-1} x_{n,m} \cdot \max(0, 1 - |\tilde{i}' - n|) \cdot \max(0, 1 - |\tilde{j}' - m|)$$

Lots of multiplication of pixel values with zero distances!

$$\tilde{x}'_{i,j} = \sum_{n=0}^{H-1} \sum_{m=0}^{W-1} x_{n,m} \cdot \max(0, 1 - |\tilde{i}' - n|) \cdot \max(0, 1 - |\tilde{j}' - m|)$$

$$\tilde{d}_{n,m}^{i,j}$$

$$\tilde{x}'_{i,j} = \sum_{n=0}^{H-1} \sum_{m=0}^{W-1} x_{n,m} \cdot \max(0, 1 - |\tilde{i}' - n|) \cdot \max(0, 1 - |\tilde{j}' - m|)$$

For a given (i, j) :
$$\tilde{d}_{n,m}^{i,j}$$

$$\tilde{x}'_{i,j} = \sum_{n=0}^{H-1} \sum_{m=0}^{W-1} x_{n,m} \cdot \max(0, 1 - |\tilde{i}' - n|) \cdot \max(0, 1 - |\tilde{j}' - m|)$$

For a given (i, j) :
$$\tilde{d}_{n,m}^{i,j}$$

Decompose expression and precompute interpolation distances

$$\tilde{x}'_{i,j} = \sum_{n=0}^{H-1} \sum_{m=0}^{W-1} x_{n,m} \cdot \tilde{d}_{n,m}^{i,j}$$

Decompose expression and precompute interpolation distances

$$\tilde{x}'_{i,j} = \sum_{n=0}^{H-1} \sum_{m=0}^{W-1} (x_{n,m} \cdot \tilde{d}_{n,m}^{i,j})$$

Decompose expression and precompute interpolation distances

$$\tilde{x}'_{i,j} = \sum_{n=0}^{H-1} \sum_{m=0}^{W-1} x_{n,m} \cdot \tilde{d}_{n,m}^{i,j}$$

$$\tilde{x}'_{i,j} = \sum$$

Decompose expression and precompute interpolation distances

$$\tilde{x}'_{i,j} = \sum_{n=0}^{H-1} \sum_{m=0}^{W-1} x_{n,m} \cdot \tilde{d}_{n,m}^{i,j}$$

For a given (*i*, *j*):

$$\tilde{x}'_{i,j} = \sum_{i,j} \odot_{i,j} \odot_{i,j$$

HW

Decompose expression and precompute interpolation distances

$$\tilde{x}'_{i,j} = \sum_{n=0}^{H-1} \sum_{m=0}^{W-1} x_{n,m} \cdot \tilde{d}_{n,m}^{i,j}$$

For a given (i, j):

· CHW pixels

Decompose expression and precompute interpolation distances

$$\tilde{x}'_{i,j} = \sum_{n=0}^{H-1} \sum_{m=0}^{W-1} x_{n,m} \cdot \tilde{d}_{n,m}^{i,j}$$

Leverage custom sparse tensor representation

 (\cdot)

	_	_	_	 	 	

Leverage custom sparse tensor representation

 $\tilde{x}'_{i,j} = \sum$

Leverage custom sparse tensor representation

 $\tilde{x}'_{i,j} = \sum$

Leverage custom sparse tensor representation

Leverage custom sparse tensor representation

No multiplication of pixel values with zero distances

Robust Geometric Loss
Define worst-case output vector \hat{f} where $\hat{f}_y = \underline{f}_y$ and $\hat{f}_j = \overline{f}_j \quad \forall j \neq y$

Define worst-case output vector \hat{f} where $\hat{f}_y = \underline{f}_y$ and $\hat{f}_j = \overline{f}_j \quad \forall j \neq y$

Existing formulations [worst-case loss over *entire* perturbation region] $\ell(\hat{f}(\tilde{x}), y)$

Define worst-case output vector \hat{f} where $\hat{f}_y = \underline{f}_y$ and $\hat{f}_j = \overline{f}_j \quad \forall j \neq y$

Existing formulations [worst-case loss over *entire* perturbation region] $\ell(\hat{f}(\tilde{x}), y)$

Our formulation [worst-case loss over *small, sampled* regions]

Define worst-case output vector \hat{f} where $\hat{f}_y = \underline{f}_y$ and $\hat{f}_j = \overline{f}_j \quad \forall j \neq y$

Existing formulations [worst-case loss over *entire* perturbation region] $\ell(\hat{f}(\tilde{x}), y)$

Our formulation [worst-case loss over *small, sampled* regions] To enforce robustness to *P* across entire parameter range $\tilde{\theta} = \left[\underline{\theta}, \overline{\theta}\right]$:

Define worst-case output vector \hat{f} where $\hat{f}_y = \underline{f}_y$ and $\hat{f}_j = \overline{f}_j \quad \forall j \neq y$

Existing formulations [worst-case loss over *entire* perturbation region] $\ell(\hat{f}(\tilde{x}), y)$

Our formulation [worst-case loss over *small, sampled* regions] To enforce robustness to *P* across entire parameter range $\tilde{\theta} = \left[\underline{\theta}, \overline{\theta}\right]$: $\theta \sim \mathcal{U}(\underline{\theta}, \overline{\theta})$ $\overline{\theta}$

Define worst-case output vector \hat{f} where $\hat{f}_y = \underline{f}_y$ and $\hat{f}_j = \overline{f}_j \quad \forall j \neq y$

Existing formulations [worst-case loss over *entire* perturbation region] $\ell(\hat{f}(\tilde{x}), y)$

Our formulation [worst-case loss over *small, sampled* regions] To enforce robustness to *P* across entire parameter range $\tilde{\theta} = \begin{bmatrix} \underline{\theta}, \overline{\theta} \end{bmatrix}$: $\theta - \nu \qquad \theta + \nu$ $\overline{\theta}$

Define worst-case output vector \hat{f} where $\hat{f}_y = \underline{f}_y$ and $\hat{f}_j = \overline{f}_j \quad \forall j \neq y$

Existing formulations [worst-case loss over *entire* perturbation region] $\ell(\hat{f}(\tilde{x}), y)$

Our formulation [worst-case loss over *small, sampled* regions] To enforce robustness to *P* across entire parameter range $\tilde{\theta} = \begin{bmatrix} \underline{\theta}, \overline{\theta} \end{bmatrix}$: $\frac{\theta}{\theta} = \begin{bmatrix} \theta & \theta \\ \theta & \theta \end{bmatrix}$

Define worst-case output vector \hat{f} where $\hat{f}_y = \underline{f}_y$ and $\hat{f}_j = \overline{f}_j \quad \forall j \neq y$

Existing formulations [worst-case loss over *entire* perturbation region] $\ell(\hat{f}(\tilde{x}), y)$

Our formulation [worst-case loss over *small, sampled* regions] To enforce robustness to *P* across entire parameter range $\tilde{\theta} = \left[\underline{\theta}, \overline{\theta}\right]$: $\frac{\theta}{\theta} = \left[\frac{\theta - \nu}{\theta_l}, \frac{\theta + \nu}{\theta_l}, \frac{\theta + \nu}{\theta_l}, \frac{\theta}{\theta_l}, \frac{\theta}{\theta_l}$

Regression

Minimize both the lower and upper bounds' distances to the ground truth

MNIST

Set 1: Scale(5%), Rotate(5°), Contrast(5%), Brightness(0.01) **Set 2:** Shear(2%), Rotate(2°), Scale(2%), Contrast(2%), Brightness(0.001)

CIFAR-10

Set 1: Rotate(10°) **Set 2:** Rotate(2°), Shear(2%)

Tiny ImageNet

First results for deterministic certified geometric robustness on CIFAR-10+

Transforms	Accuracy (%)	Certified (%)	Certification Time per Image (s)
Shear(2%)	35.5	25.7	0.214
Scale(2%)	33.1	21.3	0.205
Rotate(5°)	32.2	17.4	1.006

In ℓ_{∞} -norm setting with $\epsilon = \frac{1}{255}$, 27.8% accuracy and 15.9% certified robustness in Xu et al., 2020

Udacity Self-Driving

Task: predict steering angle from $3 \times 66 \times 200$ driving scene image **Network:** 9-layer convolutional network from Bojarski et al., 2016 **Transformation:** $\pm 2^{\circ}$ rotation

Udacity Self-Driving

Task: predict steering angle from $3 \times 66 \times 200$ driving scene image **Network:** 9-layer convolutional network from Bojarski et al., 2016 **Transformation:** $\pm 2^{\circ}$ rotation

Green: ground truth label **Blue:** network prediction **Red:** certified bound

Udacity Self-Driving

Certified training can **help** network performance

Training Method	MAE	Certified MAE	Certification Time per Image (s)
Regular	6.07°	97.56°	0.11
Dropout	4.85°	96.65°	0.12
Ours	5.36 °	8.05 °	0.11

Conclusion

Robust geometric loss

 $\ell\left(\hat{f}\left(P(x,\tilde{\theta}_l)\right),y\right)$ $\theta \sim \mathcal{U}(\underline{\theta},\overline{\theta}) \text{ and } \tilde{\theta}_l = [\theta - \nu, \theta + \nu]$

Fast geometric verifier

Poster session 1 11:30 – 13:30 @ MH1-2-3-4 #155

Code