
161

A General Construction for Abstract Interpretation of

Higher-Order Automatic Differentiation

JACOB LAUREL, University of Illinois Urbana-Champaign, USA

REM YANG, University of Illinois Urbana-Champaign, USA

SHUBHAM UGARE, University of Illinois Urbana-Champaign, USA

ROBERT NAGEL, University of Illinois Urbana-Champaign, USA

GAGANDEEP SINGH, University of Illinois Urbana-Champaign and VMware Research, USA

SASA MISAILOVIC, University of Illinois Urbana-Champaign, USA

We present a novel, general construction to abstractly interpret higher-order automatic differentiation (AD).
Our construction allows one to instantiate an abstract interpreter for computing derivatives up to a chosen
order. Furthermore, since our construction reduces the problem of abstractly reasoning about derivatives to
abstractly reasoning about real-valued straight-line programs, it can be instantiated with almost any numerical
abstract domain, both relational and non-relational. We formally establish the soundness of this construction.

We implement our technique by instantiating our construction with both the non-relational interval domain
and the relational zonotope domain to compute both first and higher-order derivatives. In the latter case, we
are the first to apply a relational domain to automatic differentiation for abstracting higher-order derivatives,
and hence we are also the first abstract interpretation work to track correlations across not only different
variables, but different orders of derivatives.

We evaluate these instantiations on multiple case studies, namely robustly explaining a neural network and
more precisely computing a neural network’s Lipschitz constant. For robust interpretation, first and second
derivatives computed via zonotope AD are up to 4.76× and 6.98× more precise, respectively, compared to
interval AD. For Lipschitz certification, we obtain bounds that are up to 11,850× more precise with zonotopes,
compared to the state-of-the-art interval-based tool.

CCS Concepts: · Theory of computation→ Program analysis; Abstraction; · Mathematics of comput-

ing→ Automatic differentiation.

Additional Key Words and Phrases: Abstract Interpretation, Differentiable Programming

ACM Reference Format:

Jacob Laurel, Rem Yang, Shubham Ugare, Robert Nagel, Gagandeep Singh, and Sasa Misailovic. 2022. A General
Construction for Abstract Interpretation of Higher-Order Automatic Differentiation. Proc. ACM Program. Lang.

6, OOPSLA2, Article 161 (October 2022), 29 pages. https://doi.org/10.1145/3563324

1 INTRODUCTION

Recent years have seen a resurgence in popularity of Automatic Differentiation (AD) and Dif-
ferentiable Programming ś not only from machine learning applications requiring derivatives
(e.g., for training neural networks [Abadi et al. 2016]), but also in areas as diverse as Computer

Authors’ addresses: Jacob Laurel, jlaurel2@illinois.edu, University of Illinois Urbana-Champaign, USA; Rem Yang,

remyang2@illinois.edu, University of Illinois Urbana-Champaign, USA; Shubham Ugare, sugare2@illinois.edu, University

of Illinois Urbana-Champaign, USA; Robert Nagel, rjnagel2@illinois.edu, University of Illinois Urbana-Champaign, USA;

Gagandeep Singh, ggnds@illinois.edu, University of Illinois Urbana-Champaign and VMware Research, USA; Sasa Misailovic,

misailo@illinois.edu, University of Illinois Urbana-Champaign, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).

2475-1421/2022/10-ART161

https://doi.org/10.1145/3563324

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 161. Publication date: October 2022.

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3563324
https://doi.org/10.1145/3563324

161:2 Jacob Laurel, Rem Yang, Shubham Ugare, Robert Nagel, Gagandeep Singh, and Sasa Misailovic

Graphics [Li et al. 2018], Physical Simulation [Hu et al. 2020] and Scientific Computing [Walther
and Griewank 2012]. However, despite the widespread adoption of AD, as pointed out in Hück-
elheim et al. [2018], there is surprisingly little work on formally verifying that these programs
compute correctly. While there have been several works [Di Gianantonio and Edalat 2013; Krawiec
et al. 2022; Sherman et al. 2021] on proving correct the concrete semantics of AD, there is almost no
work on defining different abstract AD semantics for the purpose of verifying program properties
expressed over derivatives.

Abstractly interpreting AD programs is further complicated by the fact that these programs do
not have the typical concrete semantics of standard numerical programs. One either overloads
all operators to have a non-standard interpretation over a tuple of numbers corresponding to the
derivatives, such as with dual numbers [Griewank and Walther 2008], or one defines the semantics
of the differentiable program using reverse-mode program execution. Additionally, most semantics
for computing higher-order derivatives are defined over complicated structures, such as derivative
towers [Karczmarczuk 2001] or lazily evaluated data structures as in Pearlmutter and Siskind [2007].
Hence, given the complexities in existing AD program semantics, adapting existing static analysis
techniques, specifically abstract interpretation [Cousot and Cousot 1977], to soundly reason about
differentiable programs is a notable challenge.
While there has been limited work for soundly reasoning about AD, the few techniques that

have been developed in this area are significantly restricted: they are either limited to the interval
domain [Bendtsen and Stauning 1996; Deussen 2021; Laurel et al. 2022a; Sherman et al. 2021]
or do not support higher-order derivatives [Jordan and Dimakis 2021; Laurel et al. 2022a]. Thus,
precisely tracking relational information across higher derivatives is out of the realm of existing
abstract interpreters, despite the fact that this precision is needed in tasks such as improving the
performance of verified ODE solvers [Immler 2018]. Furthermore, fundamental questions that
arise when constructing an abstract semantics, such as how to systematically construct sound
transformers for broad classes of functions or understanding the differences in the precision of
different domains, have not been studied ś especially for AD involving higher-order derivatives.

Challenges. We focus on developing a general framework for systematically constructing
abstract semantics for AD with arbitrary order derivatives. The first key challenge is that we need to
first define a concrete semantics of higher-order AD that lends itself to precise and scalable abstract
interpretation ś particularly with higher derivatives. This is challenging since the same abstract
interpreter can have significantly different cost and precision for different syntactic representations
of the same computation.

The second key challenge is ensuring that this abstract reasoning can then be done generally with
expressive relational abstract domains and is not just constrained to the simpler interval domain, as
in Bendtsen and Stauning [1996]; Deussen [2021]; Laurel et al. [2022a]. This problem is challenging
since unlike in conventional programs, reasoning about higher-order AD requires precise abstract
transformers for an exponential number of non-linear assignment statements which result from
all the different partial derivative expressions. Designing these abstract transformers manually
would require considerable expertise as well as substantial AD domain knowledge to know how
the functional forms of different derivatives can be leveraged for precision.

Therefore, we need a generic construction that can systematically construct sound transformers
for all higher-order derivatives by composing the transformers for a small number of primitive
functions in our language. We also want to systematically leverage analytical properties of these
derivatives to further refine the precision of the abstraction in a way that goes beyond naively
composing existing numerical domains’ abstract transformers together. Simultaneously addressing
all of these challenges is beyond the scope of any existing work.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 161. Publication date: October 2022.

A General Construction for Abstract Interpretation of Higher-Order Automatic Differentiation 161:3

Our Work. We present a novel construction for abstractly interpreting higher-order AD to
address these challenges. Our construction involves defining a concrete semantics for arbitrary
order AD that semantically desugars the computation of derivatives into primitive operations
on single variables, and that also leverages data-dependence across derivatives in the program’s
syntactic representation. Thus, given only a small set of sound transformers for the elementary
arithmetic primitives, we can immediately abstractly interpret these transformed AD programs,
and still attain precision due to the dependency-aware syntactic representation of the AD program.
Hence, we reduce the problem of formally reasoning about complicated AD semantics and having
to manually design custom transformers for all possible partial derivatives to reasoning about
(straight-line) programs using standard abstract domains. This technique allows us generality in
the abstraction ś we can easily instantiate the construction with relational domains. We also show
how to combine the abstract transformers with domain-specific knowledge about derivatives to
further improve the precision of the analysis.

Contributions. The paper makes the following contributions:

(1) Concrete AD Semantics:We present a novel concrete semantics for higher-order AD. By
designing our concrete semantics to be forward-mode and imperative, and by exposing
each variable in a way that captures data dependence across derivatives, we enable one to
intuitively define precise abstractions of these concrete semantics.

(2) Generic Abstract Interpretation of AD: We provide the first generic construction to
allow one to abstractly interpret forward-mode AD with arbitrary order derivatives. This
construction is fully general and can be instantiated with both relational and non-relational
abstract domains.

(3) Implementation:We implement our formal construction into a practical tool and instantiate
it with the interval and zonotope domains for first and higher derivatives, thus providing the
first implementation of higher-order AD with relational abstract domains. Our implementa-
tion is publicly available at https://github.com/uiuc-arc/AbstractAD [Laurel et al. 2022c].

(4) Evaluation: We empirically show the advantages of using a relational abstract domain and
the benefits of abstractly interpreting higher-order derivatives through two case studies:
(1) computing robust interpretations of regression neural networks and (2) bounding the
Lipschitz constant of classification neural networks with respect to a semantic perturbation.
For the robust interpretation task, we are the first to bound both first and second derivatives
of a neural network with respect to an input region. First and second derivatives computed
via zonotope AD are up to 4.76× and 6.98× more precise, respectively, compared to interval
AD. For Lipschitz certification, we obtain bounds that are up to 11,850× more precise with
zonotopes, compared to the state-of-the-art interval-based tool of Laurel et al. [2022a].

2 EXAMPLE

We start with a simple illustrative example that highlights the generality of our construction.

Running Example. Fig. 1 presents an example neural network (the reader can find a simpler
example in the Appendix [Laurel et al. 2022b]). The network takes two inputs 𝑥1 and 𝑥2, propagates
them through an affine layer to get the values of hidden neurons 𝑥3 and 𝑥4, applies a SoftPlus

activation to get the values of 𝑥5 and 𝑥6, then passes those results through a final affine layer to get
the outputs 𝑥7 and 𝑥8. Our goal is to compute second derivatives of the network’s outputs (𝑥7 and
𝑥8) with respect to the inputs (𝑥1 and 𝑥2). These derivatives are useful for a variety of applications,
such as if we want to explain the network by computing interactions between inputs (as in Janizek
et al. [2021]) or if we want to certify input regions where the function is locally concave or convex
[Deussen 2021]. For this example, we study the impact of the interaction between 𝑥1 and 𝑥2 on the

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 161. Publication date: October 2022.

https://github.com/uiuc-arc/AbstractAD

161:4 Jacob Laurel, Rem Yang, Shubham Ugare, Robert Nagel, Gagandeep Singh, and Sasa Misailovic

𝑥1

𝑥1 [∅] = 𝑥
𝑖𝑛
1

𝑥1 [{1}] = 1

𝑥1 [{2}] = 0

𝑥1 [{1, 2}] = 0

𝑥2

𝑥2 [∅] = 𝑥
𝑖𝑛
2

𝑥2 [{1}] = 0

𝑥2 [{2}] = 1

𝑥2 [{1, 2}] = 0

𝑥3

𝑥3 [∅] = 𝑤13𝑥1 [∅] + 𝑤23𝑥2 [∅]

𝑥3 [{1}] = 𝑤13𝑥1 [{1}] + 𝑤23𝑥2 [{1}]

𝑥3 [{2}] = 𝑤13𝑥1 [{2}] + 𝑤23𝑥2 [{2}]

𝑥3 [{1, 2}] = 𝑤13𝑥1 [{1, 2}] + 𝑤23𝑥2 [{1, 2}]

𝑥4

𝑥4 [∅] = 𝑤14𝑥1 [∅] + 𝑤24𝑥2 [∅]

𝑥4 [{1}] = 𝑤14𝑥1 [{1}] + 𝑤24𝑥2 [{1}]

𝑥4 [{2}] = 𝑤14𝑥1 [{2}] + 𝑤24𝑥2 [{2}]

𝑥4 [{1, 2}] = 𝑤14𝑥1 [{1, 2}] + 𝑤24𝑥2 [{1, 2}]

𝑤13 = 0.7074

𝑤
14 =

0.7068

𝑤2
3
=
0.7

06
8

𝑤24 = 0.7074

𝑥5

𝑥5 [∅] = Softplus (𝑥3 [∅])

𝑑𝑥5 [1] = 𝜎 (𝑥3 [∅])

𝑥5 [{1}] = 𝑑𝑥5 [1] · 𝑥3 [{1}]

𝑥5 [{2}] = 𝑑𝑥5 [1] · 𝑥3 [{2}]

𝑑𝑥5 [2] = 𝑑𝑥5 [1] · (1 − 𝑑𝑥5 [1])

𝑥5 [{1, 2}] =
(

𝑥3 [{1, 2}] · 𝑑𝑥5 [1]

+𝑥3 [{1}]𝑥3 [{2}] · 𝑑𝑥5 [2]
)

𝑥6

𝑥6 [∅] = Softplus (𝑥4 [∅])

𝑑𝑥6 [1] = 𝜎 (𝑥4 [∅])

𝑥6 [{1}] = 𝑑𝑥6 [1] · 𝑥4 [{1}]

𝑥6 [{2}] = 𝑑𝑥6 [1] · 𝑥4 [{2}]

𝑑𝑥6 [2] = 𝑑𝑥6 [1] · (1 − 𝑑𝑥6 [1])

𝑥6 [{1, 2}] =
(

𝑥4 [{1, 2}] · 𝑑𝑥6 [1]

+𝑥4 [{1}]𝑥4 [{2}] · 𝑑𝑥6 [2]
)

SoftPlus

SoftPlus

𝑥7

𝑥7 [∅] = 𝑤57𝑥5 [∅] + 𝑤67𝑥6 [∅]

𝑥7 [{1}] = 𝑤57𝑥5 [{1}] + 𝑤67𝑥6 [{1}]

𝑥7 [{2}] = 𝑤57𝑥5 [{2}] + 𝑤67𝑥6 [{2}]

𝑥7 [{1, 2}] = 𝑤57𝑥5 [{1, 2}] + 𝑤67𝑥6 [{1, 2}]

𝑥8

𝑥8 [∅] = 𝑤58𝑥5 [∅] + 𝑤68𝑥6 [∅]

𝑥8 [{1}] = 𝑤58𝑥5 [{1}] + 𝑤68𝑥6 [{1}]

𝑥8 [{2}] = 𝑤58𝑥5 [{2}] + 𝑤68𝑥6 [{2}]

𝑥8 [{1, 2}] = 𝑤58𝑥5 [{1, 2}] + 𝑤68𝑥6 [{1, 2}]

𝑤57 = 0.7074

𝑤
58 = −0.7068

𝑤67
=
0.7

068

𝑤68 = 0.7074

Fig. 1. Concrete 2𝑛𝑑 order forward-mode AD evaluation

network output over a local region. The computation of the neural network output can be described
by a straight-line imperative program, where each of the eight neurons is a program variable.
However, when interpreting this program with forward-mode AD semantics, our interpreter will
add additional augmented variables to keep track of all the derivatives (described in Section 4).

Second Derivative Analysis. While our prior work [Laurel et al. 2022a] can propagate 1𝑠𝑡 deriva-
tives through a neural network using the interval domain, for computing higher-order interactions
of multiple variables, we need to compute higher derivatives with respect to the inputs, in this case
2𝑛𝑑 derivatives. To compute 2𝑛𝑑 derivatives, we instantiate a 2𝑛𝑑 -order instance of our construction.
A key contribution of our approach is that it provides a general construction for giving both a
concrete and abstract semantics for AD of arbitrary order.

For this example, each variable 𝑥𝑖 in the original program will have four associated components
in the forward-mode AD interpretation. The first of the four components is the łreal partž, denoted
as 𝑥𝑖 [∅], which intuitively corresponds to a ł0𝑡ℎž derivative. Equivalently, 𝑥𝑖 [∅] is just the value of
𝑥𝑖 , if the program were run under standard semantics instead of forward-mode AD semantics.

The next two components are 𝑥𝑖 ’s first derivative terms, 𝑥𝑖 [{1}] and 𝑥𝑖 [{2}], which respectively
index the first derivatives with respect to variable 1 and variable 2. Just as dual numbers (the
canonical approach for first-order AD) only support differentiation of one variable at a time, our
second-order analysis only supports differentiation of two variables at a time, which we explain
formally in Theorem 4.11. In this example, variable 1 is just 𝑥1 and variable 2 is just 𝑥2, however
this need not always be the case. Hence, for each 𝑥𝑖 , 𝑥𝑖 [{1}] =

𝜕𝑥𝑖
𝜕𝑥1

and 𝑥𝑖 [{2}] =
𝜕𝑥𝑖
𝜕𝑥2

. The last of

the four components is the 2𝑛𝑑 derivative term 𝑥𝑖 [{1, 2}], which tracks the derivative with respect

to the first variable, then with respect to the second; equivalently, 𝑥𝑖 [{1, 2}] =
𝜕2𝑥𝑖
𝜕𝑥1𝜕𝑥2

. Furthermore,

because derivatives are symmetric (e.g., 𝜕2𝑥𝑖
𝜕𝑥1𝜕𝑥2

=
𝜕2𝑥𝑖
𝜕𝑥2𝜕𝑥1

), we do not need to worry about terms

such as 𝑥𝑖 [{2, 1}]. In our example, we can think of the forward-mode AD semantics as propagating
coefficients of a 2𝑛𝑑 degree Taylor polynomial that has been truncated to only include these terms.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 161. Publication date: October 2022.

A General Construction for Abstract Interpretation of Higher-Order Automatic Differentiation 161:5

A key point is that our forward-mode AD semantics will automatically transform the original
program to include additional variables to track these additional derivatives, which we will also
call augmented variables.

These derivative will be evaluated not symbolically, but rather at specific points ś in this example,
all derivatives will be concretely evaluated at the scalar point (𝑥𝑖𝑛1 , 𝑥𝑖𝑛2) ∈ R

2 shown in Fig. 1.
Lastly, to properly initialize the input state so that the concrete evaluation produces correct

derivatives with respect to 𝑥1 and 𝑥2, we initialize the first derivative terms of the inputs as

𝑥1 [{1}] = 1 (since 𝑑𝑥1
𝑑𝑥1

= 1) and 𝑥2 [{2}] = 1 (since 𝑑𝑥2
𝑑𝑥2

= 1), while also setting 𝑥1 [{2}] = 𝑥2 [{1}] =

𝑥1 [{1, 2}] = 𝑥2 [{1, 2}] = 0, since 𝜕𝑥1
𝜕𝑥2

=
𝜕𝑥2
𝜕𝑥1

=
𝜕2𝑥1
𝜕𝑥1𝜕𝑥2

=
𝜕2𝑥2
𝜕𝑥1𝜕𝑥2

= 0. This initialization is the second-

order analog of how one initializes states for 1𝑠𝑡 -order forward-mode AD with dual numbers.

Forward-Mode AD. The question then becomes how to correctly propagate these additional terms
corresponding to first and second derivatives of each 𝑥𝑖 through the differentiable program (in this
example a neural network). For first derivatives, there are the canonical dual numbers which give a
standard way to do this. However, for higher derivatives, we must lift all standard calculus rules to
higher-order derivatives. For instance, the chain rule must be generalized using the Faa di Bruno
formula [Di Bruno 1857], and the product rule must be generalized using the general Leibniz rule.

We next compute the values for 𝑥3 and 𝑥4. Because of the linearity of derivatives, both the first and
second derivative terms for 𝑥3 and 𝑥4 are also linear combinations of the respective first and second
derivative terms of 𝑥1 and 𝑥2. Hence 𝑥3 [{1}] = 𝑤13𝑥1 [{1}]+𝑤23𝑥2 [{1}], 𝑥3 [{1, 2}] = 𝑤13𝑥1 [{1, 2}]+

𝑤23𝑥2 [{1, 2}] and 𝑥4 [{2}] = 𝑤14𝑥1 [{2}] +𝑤24𝑥2 [{2}], 𝑥4 [{1, 2}] = 𝑤14𝑥1 [{1, 2}] +𝑤24𝑥2 [{1, 2}].
Upon computing all real and derivative coefficients for 𝑥3 and 𝑥4, we then apply a SoftPlus

activation to obtain 𝑥5 and 𝑥6, respectively. Computing the first derivative terms ś 𝑥5 [{1}], 𝑥5 [{2}],
𝑥6 [{1}], and 𝑥6 [{2}] ś is done virtually identically as with dual numbers. We compute the first
derivative of the SoftPlus function which is the sigmoid function, 𝜎 (𝑥), and evaluate it at both 𝑥3 [∅]
and 𝑥4 [∅], saving these results in unique intermediate variables, 𝑑𝑥5 [1] and 𝑑𝑥6 [1].
However, for first derivatives, the chain rule tells us that we need not only the derivatives of

the sigmoidal function (𝑑𝑥5 [1] and 𝑑𝑥6 [1]) we are composing with, but also the first derivative
of the inputs (𝑥3 [{1}] and 𝑥4 [{1}]), hence why we must also evaluate 𝑥5 [{1}] = 𝑑𝑥5 [1] · 𝑥3 [{1}],
𝑥5 [{2}] = 𝑑𝑥5 [1] · 𝑥3 [{2}] as well as 𝑥6 [{1}] = 𝑑𝑥6 [1] · 𝑥4 [{1}] and 𝑥6 [{2}] = 𝑑𝑥6 [1] · 𝑥4 [{2}].

Computing the higher-derivative terms for composition with the SoftPlus function is more
involved. While computing the higher-derivative terms for affine combinations of variables is easy
due to linearity, higher-derivatives of functional composition require Faa di Bruno’s formula. In
this example, we need to compute the value of the second derivative of the SoftPlus function, which
is 𝜎 (𝑥) · (1 − 𝜎 (𝑥)). Since we have already computed 𝜎 (𝑥3 [∅]) and 𝜎 (𝑥4 [∅]), we can reuse these
results (respectively stored in 𝑑𝑥5 [1] and 𝑑𝑥6 [1]), hence why the second derivatives are computed
as 𝑑𝑥5 [2] = 𝑑𝑥5 [1] · (1 − 𝑑𝑥5 [1]) and 𝑑𝑥6 [2] = 𝑑𝑥6 [1] · (1 − 𝑑𝑥6 [1]). We can then use both 𝑑𝑥5 [1]
and 𝑑𝑥5 [2] as well as 𝑑𝑥6 [1] and 𝑑𝑥6 [2] to compute 𝑥5 [{1, 2}] and 𝑥6 [{1, 2}]. It is important to
note that there is a data-dependence across derivatives: for instance, 𝑑𝑥6 [2] has data-dependence on
𝑑𝑥6 [1]. This data-dependence is a direct result of how we have set up our concrete AD semantics,
as one could have naively had the transformed program recompute terms instead of producing
a program that exposes data dependence between lower and higher-order derivatives as we do.
We will later see in Section 7 that transforming the program using this technique improves the
precision when performing abstract interpretation with a relational domain.
Lastly, we again apply an affine layer to get the final output of the network. As before, we

take linear combinations of not just the łrealž parts (𝑥5 [∅] and 𝑥6 [∅]) but also their derivative
parts, since derivatives still follow linearity. The final outputs are now the derivatives with respect

to the original inputs, 𝑥1 and 𝑥2. Thus, 𝑥7 [{1}] =
𝜕𝑥7
𝜕𝑥1

�

�

(𝑥𝑖𝑛1 ,𝑥
𝑖𝑛
2) ∈R

2 , 𝑥7 [{2}] =
𝜕𝑥7
𝜕𝑥2

�

�

(𝑥𝑖𝑛1 ,𝑥
𝑖𝑛
2) ∈R

2 and

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 161. Publication date: October 2022.

161:6 Jacob Laurel, Rem Yang, Shubham Ugare, Robert Nagel, Gagandeep Singh, and Sasa Misailovic

𝑥1

𝑥1 [∅] = .5 + .5𝜖1

𝑥1 [{1}] = 1

𝑥1 [{2}] = 0

𝑥1 [{1, 2}] = 0

𝑥2

𝑥2 [∅] = .5 + .5𝜖2

𝑥2 [{1}] = 0

𝑥2 [{2}] = 1

𝑥2 [{1, 2}] = 0

𝑥3

𝑥3 [∅] = .707 + .35𝜖1 + .35𝜖2

𝑥3 [{1}] = .7074

𝑥3 [{2}] = .7068

𝑥3 [{1, 2}] = 0

𝑥4

𝑥4 [∅] = .00028 − .35𝜖1 + .35𝜖2

𝑥4 [{1}] = −.7068

𝑥4 [{2}] = .7074

𝑥4 [{1, 2}] = 0

𝑤13 = 0.7074

𝑤
14 =
−0.7068

𝑤2
3
=
0.7

06
8

𝑤24 = 0.7074

𝑥5

𝑥5 [∅] = 1.13 + .23𝜖1 + .23𝜖2 + .027𝜖3

𝑥5 [{1}] = .46 + .04𝜖1 + .04𝜖2 + .03𝜖5

𝑥5 [{2}] = .46 + .04𝜖1 + .04𝜖2 + .03𝜖5

𝑥5 [{1, 2}] = .11 + .03𝜖1 + .03𝜖2 + .02𝜖5 + .01𝜖7

𝑥6

𝑥6 [∅] = .72 − .17𝜖1 + .17𝜖2 + .03𝜖4

𝑥6 [{1}] = −.35 + .05𝜖1 − .05𝜖2 − .01𝜖6

𝑥6 [{2}] = .35 + .05𝜖1 − .05𝜖2 − .01𝜖6
𝑥6 [{1, 2}] = -.12 + .04𝜖1 − .04𝜖2 − .007𝜖6 − .01𝜖8

SoftPlus

SoftPlus

𝑥7

𝑥7 [∅] = .29 + .29𝜖1 + .04𝜖2 + .02𝜖3 − .02𝜖4

𝑥7 [{1}] = .57 − .01𝜖1 + .07𝜖2 + .02𝜖5 + .007𝜖6

𝑥7 [{2}] = .07 + .07𝜖1 − .01𝜖2 + .02𝜖5 − .007𝜖6

𝑥7 [{1, 2}] = .17 − .008𝜖1 + .05𝜖2 + .01𝜖5
+.005𝜖6 + .008𝜖7 + .01𝜖8

𝑥8

𝑥8 [∅] = 1.3 + .04𝜖1 + .3𝜖2 + .02𝜖3 + .02𝜖4

𝑥8 [{1}] = .07 + .07𝜖1 − .01𝜖2 + .02𝜖5 − .007𝜖6

𝑥8 [{2}] = .57 − .01𝜖1 + .07𝜖2 + .02𝜖5 + .007𝜖6

𝑥8 [{1, 2}] = −.008 + .05𝜖1 − .008𝜖2 + .01𝜖5
−.005𝜖6 + .008𝜖7 − .01𝜖8

𝑤57 = 0.7074

𝑤
58 = 0.7068

𝑤67
=
−0
.70

68

𝑤68 = 0.7074

Fig. 2. Abstract 2𝑛𝑑 order forward-mode AD evaluation

𝑥7 [{1, 2}] =
𝜕2𝑥7
𝜕𝑥1𝜕𝑥2

�

�

(𝑥𝑖𝑛1 ,𝑥
𝑖𝑛
2) ∈R

2 , where the notation
𝜕𝑥𝑖

𝜕𝑥 𝑗 ,...,𝜕𝑥𝑘
| (𝑥1,...,𝑥𝑚) ∈R𝑚 denotes the partial deriva-

tive of some variable (𝑥𝑖) with respect to other variables (𝑥 𝑗 , ..., 𝑥𝑘) evaluated at some concrete point

(𝑥1, ..., 𝑥𝑚) ∈ R
𝑚 . Likewise, we also know that 𝑥8 [{1}] =

𝜕𝑥8
𝜕𝑥1

�

�

(𝑥𝑖𝑛1 ,𝑥
𝑖𝑛
2) ∈R

2 , 𝑥8 [{2}] =
𝜕𝑥8
𝜕𝑥2

�

�

(𝑥𝑖𝑛1 ,𝑥
𝑖𝑛
2) ∈R

2

and 𝑥8 [{1, 2}] =
𝜕2𝑥8
𝜕𝑥1𝜕𝑥2

�

�

(𝑥𝑖𝑛1 ,𝑥
𝑖𝑛
2) ∈R

2 .

Abstract Interpretation. Having shown how the concrete semantics are interpreted and expose
each derivative explicitly as a separate variable in memory (indexed by a set), we can think about
how we might abstractly interpret these semantics to get formal bounds on all of these derivatives
inside a region. Getting bounds on these derivatives is useful as (1) derivatives are canonically used
for explaining the behavior (e.g. 1𝑠𝑡 -order feature attribution or 2𝑛𝑑 -order interactions) of a neural
network and (2) prior work has shown that such explanations evaluated at scalar points are not
robust [Alvarez-Melis and Jaakkola 2018], hence why recent work [Fel et al. 2022] has focused on
computing provably robust explanations using interval abstractions. Abstractly interpreting the
AD used to compute the derivatives for these explanations gives us these provable bounds.

For our example, we instantiate our construction with the zonotope abstract domain [Ghorbal
et al. 2009], which associates to each variable an affine form written as 𝑐0 +

∑𝐾
𝑖=1 𝑐𝑖𝜖𝑖 , where each

noise term satisfies 𝜖𝑖 ∈ [−1, 1]. Since multiple variables can share noise terms, dependencies across
variables are preserved to a high-degree; therefore, the zonotope domain is a relational domain.

For the purposes of this example, we want to compute provable bounds on the derivatives of all
variables for the local region (𝑥𝑖𝑛1 , 𝑥𝑖𝑛2) ∈ [0, 1] × [0, 1]. Since 𝑥

𝑖𝑛
1 ∈ [0, 1], its affine form is .5 + .5𝜖1.

Likewise since 𝑥𝑖𝑛2 ∈ [0, 1], its affine form is .5 + .5𝜖2, noting that it has an independent noise term
(𝜖2 instead of 𝜖1) since the variables are not correlated. Even for the abstract analysis, we still set
𝑥1 [{1}] = 1 and 𝑥2 [{2}] = 1 if we wish to differentiate with respect to 𝑥1 and 𝑥2, hence why there
are still constants (constants are represented exactly in the zonotope domain).

For AD, affine transformations on variables correspond to affine transformations on all of their
derivatives. Thus, because we will be computing not just one, but 4 affine transformations per
variable (one for each component), it is advantageous to have an abstract domain that is as precise
as possible for affine transformations. The zonotope domain is exact for affine transformations,
thus making it attractive for abstract interpretation of AD. For the łrealž parts of 𝑥3 and 𝑥4 , we

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 161. Publication date: October 2022.

A General Construction for Abstract Interpretation of Higher-Order Automatic Differentiation 161:7

(a) Bounds on First Derivatives (b) Bounds on Second Derivatives

Fig. 3. Bounds on Jacobian and Hessian components. Black bounds were obtained via interval analysis; red

bounds were obtained via zonotope analysis. The dots represent concretely evaluating the Jacobian/Hessian

at scalar points sampled from the input region.

have 𝑥3 [∅] = .707 + .35𝜖1 + .35𝜖2 and 𝑥4 [∅] = .00028 − 0.35𝜖1 + .35𝜖2. Likewise, the first derivative
terms of 𝑥3 and 𝑥4 are exactly an affine combination of their original values (0 and 1), giving
𝑥3 [{1}] = .7074, 𝑥3 [{2}] = .7068 and 𝑥4 [{1}] = −.7068, 𝑥4 [{2}] = .7074, respectively. We also
note that the second derivative terms (𝑥3 [{1, 2}] and 𝑥4 [{1, 2}]) are still zero (which is represented
exactly in the zonotope domain), as the second derivative of a linear function is necessarily zero.
Applying any non-linear function, such as a 𝜎 (𝑥) or SoftPlus(x), to a zonotope or affine form

is more challenging, as we must come up with an abstract transformer that employs a sound
linearization of that function. Furthermore, for AD, we need a sound linearization for not just the
activation function, but also for all of its derivatives. Hence, we need abstract transformers for
SoftPlus(x), 𝜎 (𝑥), and multiplication. In Section 6.2, we describe how to automatically construct
zonotope transformers for functions like SoftPlus(x) that other works [Jordan and Dimakis 2021;
Singh et al. 2018a] cannot support, using the Chebyshev construction [Stolfi and de Figueiredo
2003]. The core idea is to add new noise symbols for each application of a non-linear function. The
resulting affine forms after applying the SoftPlus(x) are shown above variable 𝑥5 and below variable
𝑥6 in Fig. 2. Since the 𝑑𝑥𝑖 [1] and 𝑑𝑥𝑖 [2] are merely intermediate variables for the computation of
each 𝑥𝑖 [{1}], 𝑥𝑖 [{2}], and 𝑥𝑖 [{1, 2}], we omit them for simplicity. However, it is important to recall
that because of how we set up the semantics earlier, there is a data dependence between 𝑑𝑥𝑖 [1]

and 𝑑𝑥𝑖 [2]. The zonotope domain will be able to leverage this dependence for improved precision.
We can now finally propagate the zonotope through the last affine layer. As mentioned, for the

zonotope domain, this step is exact. The final affine forms (which collectively form the zonotope) for
all derivatives are shown in Fig. 2. Furthermore, we can ultimately convert this output zonotope to
interval bounds for each variable. Fig. 3a presents in red the bounds for all first derivatives computed
from the zonotopes and likewise Fig. 3b shows in red the bounds on the second derivatives. We
also show the result of performing the abstraction instantiated with the standard interval domain,
denoted by the black bars in the respective plots. Lastly, we show the derivatives at randomly
sampled points (𝑥1, 𝑥2) ∈ [0, 1] × [0, 1] using only the concrete semantics (colored points). Both
plots show that zonotopes are more precise for bounding both the first and second derivatives, and
both abstractions soundly enclose the derivatives computed at scalar points. There is slightly more
over-approximation for the bounds in Fig. 3b, as second derivatives require more computations,
compounding the over-approximation inherent to the abstraction. For illustration simplicity, the

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 161. Publication date: October 2022.

161:8 Jacob Laurel, Rem Yang, Shubham Ugare, Robert Nagel, Gagandeep Singh, and Sasa Misailovic

example of Fig. 2 corresponds to a single pass of (abstract) forward-mode AD. However, to obtain
all entries plotted in Figs. 3a and 3b, we need to rerun forward-mode AD for multiple passes.
Theorem 4.11 describes how many separate passes of forward-mode AD are required.

By understanding bounds on the derivatives, we can interpret and explain the magnitude of the
contribution of each variable (1𝑠𝑡 derivatives) or the interactive combinations of two variables (2𝑛𝑑

derivatives) to the final output, and do this provably for an entire input region. We empirically
evaluate this approach further in Section 7.2.

3 PRELIMINARIES

We now detail the necessary mathematical preliminaries to describe forward-mode automatic
differentiation, particularly for higher derivatives.

3.1 Mathematical Definitions

As many of our operations involve working with sets we first detail our set-based notation. We let
(𝑛
𝑘

)

represent the scalar binomial coefficient 𝑛!
(𝑛−𝑘)!𝑘!

. We will let P(𝑆) denote the powerset of a set

𝑆 . Furthermore, we will write |𝑆 | to denote the cardinality of 𝑆 .
We will also write P𝑘 (𝑆) to denote the collection of all subsets of some set 𝑆 that have a specific

cardinality 𝑘 , equivalently {𝐴 ∈ P(𝑆) : |𝐴| = 𝑘}. For instance, P1 ({1, 2}) = {{1}, {2}}. For finite
sets of integers in a given range, we may write {1, ..., 𝐷}, e.g. {1, ..., 4} = {1, 2, 3, 4}. To denote the
set of all possible partitions of a finite set of integers, we will write Part (𝑆).

3.2 Forward-Mode Automatic Differentiation

The most basic implementation of first-order forward-mode AD is operator overloading with
dual numbers [Griewank et al. 2000]. Intuitively, dual numbers are two-dimensional numbers
that correspond to the value of a function at a point, and the value of the function’s derivative
at that point. Dual numbers are canonically defined as numbers of the form 𝑎 + 𝑏𝜖 with 𝜖 being
an infinitesimal part, similar to the imaginary part of complex numbers. However, because our
work later uses 𝜖 for denoting zonotope noise symbols, and because it is more intuitive when
generalizing to higher derivatives, we present dual numbers simply as two-element tuples.

Definition 3.1. Dual numbers, are numbers of the form (𝑎, 𝑏) where 𝑎, 𝑏 ∈ R and for any real-
valued differentiable function 𝑓 : R → R, we can lift the interpretation of 𝑓 to dual numbers by
defining 𝑓

(

(𝑎, 𝑏)
)

=
(

𝑓 (𝑎), 𝑓 ′(𝑎) · 𝑏
)

.

One may also define all the arithmetic operations over dual numbers. For example for two dual
numbers 𝑥 = (𝑎1, 𝑏1) and𝑦 = (𝑎2, 𝑏2) one defines 𝑥 +𝑦 = (𝑎1+𝑎2, 𝑏1+𝑏2), which intuitively encodes
the notion of linearity. Rules for multiplication and division are similar, implicitly encoding the
product and quotient rules. Hence, given a set of primitive functions 𝑓𝑖 whose derivatives 𝑓

′
𝑖 we know

analytically, we can propagate dual numbers through arbitrary compositions of these functions
including ones involving arithmetic operations to compute first derivatives compositionally.

Higher-Order Derivatives. Just as forward-mode automatic differentiation can compute first
derivatives using an alternate interpretation of functions and arithmetic, it can be extended to
compute higher-order derivatives, as noted in Griewank et al. [2000]. However, higher-order
derivatives are more challenging, because the formulas such as the product or chain rules must be
lifted to their higher-order versions. For first derivatives there are 2 elements in the dual number
tuple, hence one might expect that for 𝐷 th derivatives the generalization of a dual number will be

a R2
𝐷

tuple, which we will indeed show is the case. Intuitively, for a 𝐷 th-order derivative, each
of the 2𝐷 tuple elements represents a partial derivative with respect to a subset of the program

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 161. Publication date: October 2022.

A General Construction for Abstract Interpretation of Higher-Order Automatic Differentiation 161:9

variables. However, there is no loss of generality; indeed, we will show that this idea still allows
one to differentiate with respect to the same variable multiple times.
This stems from the fact that in forward-mode AD, one is essentially propagating coefficients

of a truncated 𝐷 degree multi-variate Taylor polynomial, as the coefficients (without the integer
factorial division) are precisely the values of the derivatives. We define this intuition formally.

Definition 3.2. For a variable 𝑥𝑜 corresponding to some arithmetic function of variables 𝑥1 through
𝑥𝐷 , a truncated 𝐷-degree multi-variate Taylor polynomial is a 2𝐷 length tuple of the form

(𝑥𝑜 ,
𝜕𝑥𝑜
𝜕𝑥1

, ..., 𝜕𝑥𝑜
𝜕𝑥𝐷

, 𝜕2𝑥𝑜
𝜕𝑥1𝜕𝑥2

, ..., 𝜕𝐷𝑥𝑜
𝜕𝑥1 ...𝜕𝑥𝐷

) containing the 0th through 𝐷 th-order partial derivatives with

respect to 𝑥1...𝑥𝐷 . Furthermore, each element will not be symbolic but rather the result of evaluating

that derivative at a given input point, hence the tuple is an element of R2
𝐷

.

For a fixed 𝐷 , there will be
(𝐷
0

)

zeroth derivatives (the single łrealž part 𝑥𝑜),
(𝐷
1

)

first derivatives

(𝜕
𝜕𝑥1

through 𝜕
𝜕𝑥𝐷

) all the way up to
(𝐷
𝐷

)

derivatives of order 𝐷 ś hence we can only compute one

𝐷 th-order derivative at a time, which is why the polynomial tuple is considered truncated. Thus, for

any 𝑑 ∈ {0, 1, ..., 𝐷}, there will be exactly
(𝐷
𝑑

)

derivatives of order 𝑑 stored in the tuple. Furthermore,
these derivatives will only be with respect to a predefined set of input variables.

Encoding Truncated Taylor Polynomials. Since each entry of a truncated 𝐷-degree Taylor
polynomial is a derivative evaluated at a concrete real value, we will ultimately reduce reasoning
about complicated polynomials to reasoning about their individual coefficients. However, to łde-
packagež a tuple of length 2𝐷 where each element has a specific semantic meaning (some particular
partial derivative), we need an indexing scheme to access the individual elements. This will form a
core development of our concrete semantics and will later allow us to capture data dependencies
between program variables (corresponding to derivatives) when abstracting the semantics.

Variable Indexing. As pointed out by Paszke et al. [2021], maintaining clarity in how one indexes
program variables corresponding to the various derivatives in AD is difficult. Therefore, a part of
our contribution is to develop a novel set-based indexing scheme, generalizing existing higher-
order AD implementations [Fike and Alonso 2011]. For a 𝐷 th-order truncated Taylor polynomial
tuple, each of the 2𝐷 elements corresponds to a particular element of the power-set P({1, ..., 𝐷}).
Furthermore, that element of the power set is exactly the set of variables the partial derivative is
with respect to. For instance, the empty set ∅ corresponds to the real part (e.g. 𝑥𝑜) since it is the
partial derivative with respect to no variables. Likewise, the singleton set {1} corresponds to 𝜕

𝜕𝑥1

and the full set {1, ..., 𝐷} corresponds to the 𝐷 th derivative 𝜕𝐷𝑥𝑜
𝜕𝑥1 ...𝜕𝑥𝐷

. Hence, this indexing scheme

respects the semantic meaning of the entries. Lastly, while the natural idea is to associate a unique
program variable to each number in the indexing set, we can also associate the same program
variable to multiple numbers of the set. Hence, we could associate a variable 𝑥𝑖 to both 1 and 2,

meaning the set {1, 2} corresponds to 𝜕2

𝜕𝑥𝑖𝜕𝑥𝑖
. In these cases, some of the tuple elements become

redundant copies of the same derivative. More details on input state initialization are in Section 4.4.

Example 3.3. For the following truncated degree 2 Taylor polynomial, where 𝑥1 is associated to 1

and 𝑥2 is associated to 2, given by:𝑇 = (𝑥𝑜 ,
𝜕𝑥𝑜
𝜕𝑥1

, 𝜕𝑥𝑜
𝜕𝑥2

, 𝜕2𝑥𝑜
𝜕𝑥1𝜕𝑥2

) ∈ R2
2
we have𝑇 [∅] = 𝑥𝑜 ,𝑇 [{1}] =

𝜕𝑥𝑜
𝜕𝑥1

,

𝑇 [{2}] = 𝜕𝑥𝑜
𝜕𝑥2

and 𝑇 [{1, 2}] = 𝜕2𝑥𝑜
𝜕𝑥1𝜕𝑥2

.

4 LANGUAGE SYNTAX AND SEMANTICS

4.1 Syntax

Figure 4 presents the syntax of the language. Our language is imperative and syntactically supports
arithmetic operations and differentiable function primitives. We will denote the variables in the

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 161. Publication date: October 2022.

161:10 Jacob Laurel, Rem Yang, Shubham Ugare, Robert Nagel, Gagandeep Singh, and Sasa Misailovic

𝑃 ::= 𝑃1; 𝑃2 | x𝑖 = 𝐸𝑥𝑝𝑟

𝐸𝑥𝑝𝑟 ::= x𝑗 + x𝑘 | x𝑗 − x𝑘 | x𝑗 ∗ x𝑘
| 1/x𝑗 | log(x𝑗) | exp(x𝑗)

| SoftPlus𝑎 (x𝑗) | 𝜎𝑎 (x𝑗) | 𝑐 ∈ R

Fig. 4. Differentiable Function Syntax

original program’s syntax (e.g. x1,...,x𝑘) as syntactic variables, or just SynVars. However, because
AD needs to instrument the program to also track additional variables corresponding to derivatives,
we will later need to distinguish these variables from the program variables that actually store the
derivatives. Many standard functions in machine learning can be implemented with only these
primitives: for instance, we can encode tanh(x) := 2𝜎2 (𝑥) − 1. Lastly, we detail in Def. 4.1 the
syntactic restrictions on programs needed for the resulting derivatives to be correctly computed.

Definition 4.1. A differentiable program 𝑃 is well-formed if all syntactic variables are either input
variables, denoted as 𝑥𝑖𝑛𝑖 , or accessed only after they have been defined. For simplicity, we also
require the program be in SSA form.

Example 4.2. The differentiable program 𝑃 with two input variables 𝑥𝑖𝑛1 , 𝑥𝑖𝑛2 given by 𝑥3 =

𝑥𝑖𝑛1 +𝑥
𝑖𝑛
2 ;𝑥4 = 𝑒𝑥𝑝 (𝑥3); is well-formed while the program 𝑃 ′ ≜ 𝑥3 = 𝑥𝑖𝑛1 +𝑥

𝑖𝑛
2 ;𝑥4 = 𝑒𝑥𝑝 (𝑥5);𝑥5 = 3𝑥3;

is not, since 𝑥5 is used before being defined.

One can translate a pure mathematical function that uses only the differentiable primitives in
our syntax into a well-formed program using an ANF conversion [Flanagan et al. 1993].

4.2 Concrete AD Meta-Semantics

We now define a meta-semantics, which is a construction that takes as input a maximum derivative
order𝐷 to be computed and gives a concrete forward-mode AD semantics for computing derivatives
up to that order using truncated Taylor polynomials. While we could map each syntactic variable
𝑥𝑖 in the original program to a 2𝐷 length real-valued array storing its truncated Taylor polynomial,
we instead syntactically desugar this mapping so that each individual coefficient in the Taylor
polynomial is identified by its own unique variable. Our novel set-based indexing scheme (Section
3.2) is used to distinguish these individual variables.We call this variable set the augmented variables,
or AugVars, to distinguish it from SynVars, and we will access these augmented variables using the
indexing scheme. The added benefit is that by semantically exposing each entry as an intuitively
indexed, augmented variable, we can (a) reduce reasoning about complicated mathematical objects
(Taylor polynomials) to reasoning about standard real-valued programs and (b) we can more easily
track correlations between individual variables when later using a relational abstract domain.
Hence, for forward-mode AD, our concrete states 𝜎 will map 𝜎 : AugVars → R. However this

means that if we have𝑚 syntactic variables in the program source code (e.g. 𝑥1, ..., 𝑥𝑚), thenAugVars
will nowhaveO(𝑚·2𝐷) augmented variables, e.g.𝑥1 [∅], ..., 𝑥1 [{1, ..., 𝐷}], ..., 𝑥𝑚 [∅], ..., 𝑥𝑚 [{1, ..., 𝐷}].
Having now defined a concrete AD program state 𝜎 (which is what the semantics will ultimately
return), we can formally define the concrete domain upon which the meta-semantics will be built.

Definition 4.3. The concrete domain D is P(AugVars → R) but this set is isomorphic to
P(R |AugVars |), hence we will also say that D = P(R |AugVars |).

Intuitively, for a concrete state 𝜎 we can just enumerate all O(𝑚 · 2𝐷) augmented variables
into a single state vector with their corresponding Taylor coefficient value, thus this state vector
𝜎 is equivalently an element of R |AugVars | . Because our AD states are now standard mappings

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 161. Publication date: October 2022.

A General Construction for Abstract Interpretation of Higher-Order Automatic Differentiation 161:11

J𝑥𝑖 = ExprK(𝜎) = 𝜎 [𝑥𝑖 ← JExprK(𝜎)] J𝑃1; 𝑃2K(𝜎) = J𝑃2K(J𝑃1K(𝜎))

J𝑥 𝑗 + 𝑥𝑘K(𝜎) = 𝜎 [𝑥 𝑗] + 𝜎 [𝑥𝑘] J𝑥 𝑗 − 𝑥𝑘K(𝜎) = 𝜎 [𝑥 𝑗] − 𝜎 [𝑥𝑘]

J𝑥 𝑗 ∗ 𝑥𝑘K(𝜎) = 𝜎 [𝑥 𝑗] · 𝜎 [𝑥𝑘] Jexp(𝑥𝑘)K(𝜎) = exp(𝜎 [𝑥𝑘])

J𝜎𝑎 (𝑥𝑘)K(𝜎) = 𝜎𝑎 (𝜎 [𝑥𝑘]) JSoftPlusa (𝑥𝑘)K(𝜎) = SoftPlusa (𝜎 [𝑥𝑘])

Jlog(𝑥𝑘)K(𝜎) = 𝜎 [𝑥𝑘] > 0 ? log(𝜎 [𝑥𝑘]) : ⊥ J1/𝑥𝑘K(𝜎) = 𝜎 [𝑥𝑘] ≠ 0 ? 1/𝜎 [𝑥𝑘] : ⊥

J𝑐K(𝜎) = 𝑐

Fig. 5. Semantic rules for the base statement and expression interpreter J·K (⊥ is the error state).

of (augmented) variables to real numbers, we can construct an interpreter for J·K𝐷 using only
a standard interpreter for real-valued imperative programs J·K : (𝑃,D) → D. We now formally
define J·K𝐷 in terms of the base interpreter J·K.

Definition 4.4. The base interpreter J·K : (𝑃,D) → D for assignment statements, and J𝐸𝑥𝑝𝑟K :
(𝐸𝑥𝑝𝑟,D) → R for arithmetic sub-expressions, is given by the rules of Fig. 5.

If the value of 𝜎 [𝑥𝑖] is not part of a function’s input domain, e.g. if 𝜎 [𝑥𝑖] = 0 when computing
1/(𝜎 [𝑥𝑖]), the evaluation of J·K returns ⊥. Likewise, any arithmetic operation with ⊥ returns ⊥. We
can now use J·K as a subroutine to build an interpreter for performing concrete 𝐷 th degree forward-
mode AD. Lastly, while J·K is defined in Fig. 5 only for elementary expressions (binary arithmetic and
unary functions) we will still notationally write J𝐸𝑥𝑝𝑟K when 𝐸𝑥𝑝𝑟 is a non-elementary expression,
as these are desugared to sequences of elementary operations by merely adding more augmented
variables for storing all intermediate sub-expressions.

Definition 4.5. The concrete meta-semantics for performing forward-mode AD are a parametric
semantics given by J·K𝐷 : (𝑃,D) → D, where the parameter 𝐷 ∈ N>0 is the order of the highest
derivative the AD semantics can compute. Each statement’s rule is shown in the following section.

We now give the formal rules for evaluating J·K𝐷 . We immediately see why the concrete meta-
semantics are parametric in 𝐷 ś choosing a 𝐷 governs how many times J·K will be called. This
is why we refer to these as a meta-semantics ś choosing a different 𝐷 instantiates a different
concrete semantics for each statement and expression. We also mention that in all cases, despite
the complex form of the right-hand side expressions used in assignments, the entire expression can
always be unpacked into the language primitives of Fig. 4, even if it requires introducing additional
intermediate variables to store intermediate results. Lastly, this construction is defined imperatively,
as these are a state-transformer semantics which update 𝜎 after each application of J·K.

Addition. The rule for addition is simple, as higher-order derivatives also follow linearity. The
meta-semantics are given, where for all coefficients 𝑥𝑖 [𝑆] in the truncated Taylor polynomial, we
compute that coefficient by adding the corresponding coefficients of syntactic variables 𝑥 𝑗 and 𝑥𝑘 .

J𝑥𝑖 = 𝑥 𝑗 + 𝑥𝑘K𝐷 (𝜎) ≜ for 𝑆 ∈ P({1, ..., 𝐷}) :
𝜎 = J𝑥𝑖 [𝑆] = 𝑥 𝑗 [𝑆] + 𝑥𝑘 [𝑆]K(𝜎)

return 𝜎

Subtraction. Subtraction follows nearly identically to addition, with the only difference being
the state gets updated via 𝜎 = J𝑥𝑖 [𝑆] = 𝑥 𝑗 [𝑆] −𝑥𝑘 [𝑆]K(𝜎) instead of 𝜎 = J𝑥𝑖 [𝑆] = 𝑥 𝑗 [𝑆] +𝑥𝑘 [𝑆]K(𝜎).

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 161. Publication date: October 2022.

161:12 Jacob Laurel, Rem Yang, Shubham Ugare, Robert Nagel, Gagandeep Singh, and Sasa Misailovic

J𝑥𝑖 = 𝑥 𝑗 ∗ 𝑥𝑘K𝐷 (𝜎) ≜ for 𝑑 ∈ {0, ..., 𝐷} :
for 𝑆 ∈ P𝑑 ({1, ..., 𝐷}) :

𝜎 = J𝑥𝑖 [𝑆] =
∑

𝑃 ∈P(𝑆) 𝑥 𝑗 [𝑃] · 𝑥𝑘 [𝑆 \ 𝑃]K(𝜎)
return 𝜎

Multiplication. The rule for multiplication follows directly from the Generalized Leibniz for-
mula (𝑆 \ 𝑃 is set subtraction of 𝑃 from 𝑆).

While the summation term,
∑

𝑃 ∈P(𝑆) 𝑥 𝑗 [𝑃] ·𝑥𝑘 [𝑆\𝑃], is given in a general form, the only primitive
operations involved are addition and multiplication, hence when instantiating a concrete instance
of these semantics for a fixed derivative order 𝐷 ∈ N>0 we can unroll the entire summation into
primitive additions and multiplications of existing variables, and thus we can still evaluate each
assignment in the for loop with the base interpreter of Fig. 5.

Constants. Constants are simple, as all their higher-order derivatives are zero. Hence, for any
non-empty set 𝑆 , the coefficient in 𝑥𝑖 ’s Taylor polynomial indexed by 𝑆 will necessarily be zero.

J𝑥𝑖 = 𝑐K𝐷 (𝜎) ≜ for 𝑆 ∈ P({1, ..., 𝐷}) :
i f 𝑆 = ∅ :

𝜎 = J𝑥𝑖 [∅] = 𝑐K(𝜎)
e l se :

𝜎 = J𝑥𝑖 [𝑆] = 0K(𝜎)
return 𝜎

Unary Functions. For compositions with unary functions 𝑓 : R → R, we will need to use
Faa di Bruno’s formula [Di Bruno 1857] as a generalization of the Chain rule to compute higher-
order derivatives. The multivariate Faa di Bruno formula for a 𝐷 th-order derivative of a composite
function is given below in Def. 4.6:

Definition 4.6. ([Di Bruno 1857]) Let 𝑓 : R→ R and 𝑦 = 𝑔(𝑥1, ..., 𝑥𝐷) where 𝑔 : R
𝐷 → R. Then

𝜕𝐷

𝜕𝑥1...𝜕𝑥𝐷
𝑓 (𝑦) =

∑︁

𝑃 ∈𝑃𝑎𝑟𝑡 ({1,...,𝐷 })

𝑓 |𝑃 | (𝑦) ·
∏

𝐵∈𝑃

𝜕 |𝐵 |𝑦
∏

𝑗 ∈𝐵 𝜕𝑥 𝑗

where 𝑃𝑎𝑟𝑡 ({1, ..., 𝐷}) returns the set of partitions of {1, ..., 𝐷} and |𝑃 | returns the cardinality of
set 𝑃 . Intuitively, we must compute all derivatives up to order 𝐷 of the function 𝑓 , as well as all
possible partial derivatives of order less than 𝐷 of the function 𝑦 = 𝑔(𝑥1, ..., 𝑥𝐷).

Wewill see that for the subsequent unary function semantic rules, there is a direct correspondence
between each term in Def. 4.6 and the respective rule; in particular, each possible partial derivative
needed by the Faa di Bruno formula will be stored in a separate variable. Furthermore, as with
the multiplication rule, though the notation is condensed, in the subsequent semantic rules, all
primitive arithmetic operations are just additions (from

∑

𝑃 ∈𝑃𝑎𝑟𝑡 (𝑆)), multiplications (from
∏

𝐵∈𝑃),
variable lookups (e.g. due to 𝑥 𝑗 [𝐵]) or elementary function evaluations of 𝑓 and its analytically
known derivatives. Further, when fixing a particular order of derivative, 𝐷 , all possible partitions
of all possible sets (e.g. 𝑃 ∈ 𝑃𝑎𝑟𝑡 (𝑆)) can be precomputed and enumerated (as they are finite), as
can |𝑃 |. Hence, these seemingly complicated expressions still reduce to elementary operations.

The core requirement is that we are able to analytically compute the first through 𝐷 th derivatives
of 𝑓 evaluated at the real part of 𝑥 𝑗 (itself stored in 𝑥 𝑗 [∅]). Thus, we restrict 𝑓 to only elementary
functions whose derivatives of all orders can be known analytically as combinations of the other

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 161. Publication date: October 2022.

A General Construction for Abstract Interpretation of Higher-Order Automatic Differentiation 161:13

elementary functions in the language, hence why the language is restricted as shown in Fig. 4. Each
of the 𝐷 derivatives of 𝑓 will be stored in a unique 𝐷 element array: 𝑑𝑥𝑖 [0] through 𝑑𝑥𝑖 [𝐷] within
𝜎 , but as with the Taylor coefficients, each of these elements will be exposed as its own variable.
Lastly, this is the only part that changes when defining the meta-semantics of different functions.

J𝑥𝑖 = 𝑓 (𝑥 𝑗)K𝐷 (𝜎) ≜ 𝜎 = J𝑥𝑖 [∅] = 𝑓 (𝑥 𝑗 [∅])K(𝜎)
for 𝑑 ∈ {1, ..., 𝐷} :

𝜎 = J𝑑𝑥𝑖 [𝑑] =
𝑑𝑑

𝑑𝑥𝑑
𝑓 (𝑥) |𝑥=𝑥 𝑗 [∅]K(𝜎)

for 𝑆 ∈ P𝑑 ({1, ..., 𝐷}) :
𝜎 = J𝑥𝑖 [𝑆] =

∑

𝑃 ∈𝑃𝑎𝑟𝑡 (𝑆) 𝑑𝑥𝑖 [|𝑃 |] ·
∏

𝐵∈𝑃 𝑥 𝑗 [𝐵]K(𝜎)
return 𝜎

Division. Since Division is composition with the function 𝑓 (𝑥) = 1
𝑥
, we can encode it using

the above technique. Furthermore, the derivatives of 1
𝑥
have a known elementary form that can

be encoded using only primitive arithmetic operations (multiplications and divisions), which

specifically is 𝑑𝑑

𝑑𝑥𝑑
1
𝑥
= (−1)𝑑 𝑑!

𝑥𝑑+1
. However (−1)𝑑 𝑑!

𝑥𝑑+1
=
−𝑑
𝑥
·
(−1)𝑑−1 (𝑑−1)!

𝑥𝑑
=
−𝑑
𝑥
· 𝑑

𝑑−1

𝑑𝑥𝑑−1
1
𝑥
. Hence, we

have that 𝑑𝑑

𝑑𝑥𝑑
1
𝑥
=
−𝑑
𝑥
· 𝑑

𝑑−1

𝑑𝑥𝑑−1
1
𝑥
, thus we can use the recurrence 𝑑𝑥𝑖 [𝑑] = −𝑑 ·𝑥𝑖 [∅] ·𝑑𝑥𝑖 [𝑑 − 1] which

allows us to capture data dependencies across derivative terms.

J𝑥𝑖 = 1/𝑥 𝑗 K𝐷 (𝜎) ≜ J𝑥𝑖 [∅] = 1/(𝑥 𝑗 [∅])K(𝜎)
𝜎 = J𝑑𝑥𝑖 [1] = −𝑥𝑖 [∅] · 𝑥𝑖 [∅]K(𝜎)
for 𝑑 ∈ {2, ..., 𝐷} :

𝜎 = J𝑑𝑥𝑖 [𝑑] = −𝑑 · 𝑥𝑖 [∅] · 𝑑𝑥𝑖 [𝑑 − 1]K(𝜎)
for 𝑆 ∈ P𝑑 ({1, ..., 𝐷}) :

𝜎 = J𝑥𝑖 [𝑆] =
∑

𝑃 ∈𝑃𝑎𝑟𝑡 (𝑆) 𝑑𝑥𝑖 [|𝑃 |] ·
∏

𝐵∈𝑃 𝑥 𝑗 [𝐵]K(𝜎)
return 𝜎

Exp and Log . As before, for log and exp the only difference will be the computation of the
𝐷-derivatives array, which for the exponential function is given as J𝑑𝑥𝑖 [𝑑] = 𝑥𝑖 [∅])K(𝜎) for each

𝑑 ∈ {1, ..., 𝐷} since 𝑑𝑑

𝑑𝑥𝑑
𝑒𝑥𝑝 (𝑥) = 𝑒𝑥𝑝 (𝑥) which is already stored in 𝑥𝑖 [∅]. For the log function, the

first derivative is just 1
𝑥
, hence we can reuse the functional form from the division rule to compute

all further derivatives.

J𝑥𝑖 = 𝑒𝑥𝑝 (𝑥 𝑗)K𝐷 (𝜎) ≜ J𝑥𝑖 [∅] = 𝑒𝑥𝑝 (𝑥 𝑗 [∅])K(𝜎)
for 𝑑 ∈ {1, ..., 𝐷} :

𝜎 = J𝑑𝑥𝑖 [𝑑] = 𝑥𝑖 [∅]K(𝜎)
for 𝑆 ∈ P𝑑 ({1, ..., 𝐷}) :

𝜎 = J𝑥𝑖 [𝑆] =
∑

𝑃 ∈𝑃𝑎𝑟𝑡 (𝑆) 𝑑𝑥𝑖 [|𝑃 |] ·
∏

𝐵∈𝑃 𝑥 𝑗 [𝐵]K(𝜎)
return 𝜎

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 161. Publication date: October 2022.

161:14 Jacob Laurel, Rem Yang, Shubham Ugare, Robert Nagel, Gagandeep Singh, and Sasa Misailovic

Sigmoid and SoftPlus. The sigmoid function 𝜎𝑎 (𝑥) =
1

1+𝑒−𝑎𝑥
is such that all of its derivatives can

be given in terms of an elementary combination of other sigmoid functions. The 𝑑 th derivative is

given as 𝑑𝑑

𝑑𝑥𝑑
𝜎𝑎 (𝑥) =

∑𝑑
𝑘=0 (−1)

𝑑+𝑘 (𝑘!) (𝑆𝑑,𝑘) (𝑎
𝑑)𝜎𝑎 (𝑥) (1−𝜎𝑎 (𝑥))

𝑘 , where 𝑆𝑑,𝑘 are Stirling numbers
of the second kind (which are just constants). Hence for any fixed 𝑑 ∈ N, we can combinatorially
enumerate all the terms in order to have an analytical closed-form expression for the 𝑑 th derivative
that uses only elementary operations (sums, products and constants) and the sigmoid function itself.
This means that we need only compute the sigmoid once, which we do by having the base interpreter
evaluate J𝑥𝑖 [∅] = 𝜎𝑎 (𝑥 𝑗 [∅])K(𝜎), after which we can fetch the variable 𝑥𝑖 [∅] when computing each
𝑑𝑥𝑖 [𝑑] augmented variable. This helps us to capture the dependency across derivatives.

J𝑥𝑖 = 𝜎𝑎 (𝑥 𝑗)K𝐷 (𝜎) ≜ J𝑥𝑖 [∅] = 𝜎𝑎 (𝑥 𝑗 [∅])K(𝜎)
for 𝑑 ∈ {1, ..., 𝐷} :

𝜎 = J𝑑𝑥𝑖 [𝑑] =
∑𝑑
𝑘=0 (−1)

𝑑+𝑘 (𝑘!) (𝑆𝑑,𝑘)𝑎
𝑑𝑥𝑖 [∅] (1 − 𝑥𝑖 [∅])

𝑘K(𝜎)
for 𝑆 ∈ P𝑑 ({1, ..., 𝐷}) :

𝜎 = J𝑥𝑖 [𝑆] =
∑

𝑃 ∈𝑃𝑎𝑟𝑡 (𝑆) 𝑑𝑥𝑖 [|𝑃 |] ·
∏

𝐵∈𝑃 𝑥 𝑗 [𝐵]K(𝜎)
return 𝜎

J𝑥𝑖 = SoftPlus(𝑥 𝑗)K𝐷 (𝜎) ≜ J𝑥𝑖 [∅] = SoftPlus(𝑥 𝑗 [∅])K(𝜎)
𝜎 = J𝑑𝑥𝑖 [1] = 𝜎𝑎 (𝑥 𝑗 [∅])K(𝜎)
for 𝑑 ∈ {2, ..., 𝐷} :

𝜎 = J𝑑𝑥𝑖 [𝑑] =
∑𝑑
𝑘=0 (−1)

𝑑+𝑘 (𝑘!) (𝑆𝑑,𝑘)𝑎
𝑑𝑑𝑥𝑖 [1]] (1 − 𝑑𝑥𝑖 [1])

𝑘K(𝜎)
for 𝑆 ∈ P𝑑 ({1, ..., 𝐷}) :

𝜎 = J𝑥𝑖 [𝑆] =
∑

𝑃 ∈𝑃𝑎𝑟𝑡 (𝑆) 𝑑𝑥𝑖 [|𝑃 |] ·
∏

𝐵∈𝑃 𝑥 𝑗 [𝐵]K(𝜎)
return 𝜎

Furthermore, because the sigmoid function is just the first derivative of the SoftPlus function,
the 𝑑 th derivative of a SoftPlus is just the 𝑑 − 1th derivative of a sigmoid, hence we can leverage the
exact same functional form when computing 𝑑𝑥𝑖 [𝑑] for the SoftPlus function.

Sequencing. Having defined the construction to produce a semantics for computing the 𝐷 th de-
rivative for individual assignment statements, we now note how sequencing of multiple statements
works. We also note that the simplicity in the sequencing rule stems from the fact that programs
are assumed to be in SSA form, hence no program variable will be overwritten.

J𝑃1; 𝑃2K𝐷 (𝜎) ≜ J𝑃2K𝐷
(

J𝑃1K𝐷 (𝜎)
)

Remark 1. When 𝐷 = 1, J·K𝐷 computes exactly the dual numbers [Griewank and Walther 2008]

and when 𝐷 = 2, J·K𝐷 computes exactly the hyper-dual numbers [Fike and Alonso 2011].

4.3 Precision Enhancement

A key contribution of our concrete semantics is to ensure that the transformed program which
computes all derivatives is generated in such a way that the later abstract interpretation will be
precise. For AD, the computation of derivatives involves heavy reuse of common sub-expressions,
hence by sharing these sub-expressions across multiple variables, the data dependence between
different derivatives can be made explicit. For instance, in the case of the exp function, all derivatives,

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 161. Publication date: October 2022.

A General Construction for Abstract Interpretation of Higher-Order Automatic Differentiation 161:15

𝑑𝑥𝑖 [𝑑], will be computed as J𝑑𝑥𝑖 [𝑑] = 𝑥𝑖 [∅]K(𝜎) where 𝑥𝑖 [∅] already stores the result of computing
exp(𝑥 𝑗). Likewise, one can see similar data dependencies made explicit in the rules for 1

𝑥
and the

𝜎𝑎 function. While this will not change the execution result of the concrete semantics, it does
substantially improve the precision of the abstract interpretation, as will be seen in Section 7.

4.4 Correctness

We now formally state the correctness as well as how one initializes the state to compute derivatives
with respect to specific variables.

Input Variables. We must first decide which input variables we wish to differentiate with
respect to. However, we first note the following important remark that provides a limitation on how
many input variables we can differentiate with respect to in a single forward execution J𝑃K𝐷 (𝜎).

Remark 2. For any set of syntactic input variables 𝑥𝑖𝑛𝑖 ,..., 𝑥𝑖𝑛𝑗 when evaluating J𝑃K𝐷 (𝜎), we can

only differentiate with respect to up to 𝐷 distinct syntactic variables.

This means that if the program 𝑃 has more syntactic input variables than the maximum derivative
order 𝐷 , some variables will necessarily be treated as constants (meaning not differentiated).
Additionally, if we differentiate with respect to the same syntactic variable more than once (e.g. to

compute 𝜕2

𝜕𝑥𝑖𝜕𝑥𝑖
) the number of distinct variables we will be differentiating with respect to will be

strictly less than 𝐷 , again meaning some input variables will be treated as constants. However, as
we will see, if one wishes to compute more derivatives, one may always rerun J·K𝐷 with different
input variables initialized to obtain their derivatives.

Input State. After deciding which of the (up to 𝐷) syntactic input variables we wish to dif-
ferentiate with respect to, we must properly initialize each of those syntactic input variables’
corresponding augmented variables in the input state, as AD only produces correct derivatives
if input states are initialized correctly [Griewank and Walther 2008]. We generalize this idea to
arbitrary order derivatives, as described below.

Definition 4.7. For J·K𝐷 , an initial state 𝜎 is valid if for each singleton set 𝑆 ∈ P1 ({1, ..., 𝐷}),
exactly one augmented variable satisfies 𝑥𝑖𝑛𝑖 [𝑆] = 1 while all others satisfy 𝑥𝑖𝑛𝑗 [𝑆] = 0. Furthermore,

for each 𝑆 ∈ P𝑘 ({1, ..., 𝐷}) where 𝑘 ≥ 2, all augmented variables satisfy 𝑥𝑖𝑛𝑖 [𝑆] = 0.

For different singleton sets 𝑆, 𝑆 ′ ∈ P1 ({1, ..., 𝐷}), where 𝑆 ≠ 𝑆 ′, the same input variable 𝑥𝑖𝑛𝑖 can
satisfy both 𝑥𝑖𝑛𝑖 [𝑆] = 1 and 𝑥𝑖𝑛𝑖 [𝑆

′] = 1. Setting two different augmented variables that are both
associated with the same syntactic variable to 1 allows us to differentiate with respect to the same

variable twice (e.g. 𝜕2

𝜕𝑥𝑖𝑛𝑖 𝜕𝑥𝑖𝑛𝑖
) instead of only being able to differentiate with respect to different

variables. We now illustrate an example of a valid initial state.

Example 4.8. For 𝐷 = 2 and 𝑃 ≜ 𝑥3 = 𝑥𝑖𝑛1 +𝑥
𝑖𝑛
2 , and state 𝜎 given as 𝜎 [𝑥𝑖𝑛1 [∅]] = 2, 𝜎 [𝑥𝑖𝑛1 [{1}]] =

1, 𝜎 [𝑥𝑖𝑛1 [{2}]] = 0, 𝜎 [𝑥𝑖𝑛1 [{1, 2}]] = 0 and 𝜎 [𝑥𝑖𝑛2 [∅]] = 3.5, 𝜎 [𝑥𝑖𝑛2 [{1}]] = 0, 𝜎 [𝑥𝑖𝑛1 [{2}]] = 1,
𝜎 [𝑥𝑖𝑛2 [{1, 2}]] = 0 , then we have that 𝜎 is a valid input state to J𝑃K𝐷 that can be used to compute
𝜕2𝑥3

𝜕𝑥𝑖𝑛1 𝜕𝑥
𝑖𝑛
2

at the point (2, 3.5). However, if instead 𝜎 [𝑥𝑖𝑛2 [{1}]] ≠ 0 or if 𝜎 [𝑥𝑖𝑛2 [{1, 2}]] ≠ 0 then 𝜎

would no longer be a valid initial state.

We next detail a lemma that says a correctly initialized input state computes valid derivatives of
the input variables. This lemma also relates the syntactic variables of the program to the augmented
variables computed by the interpreter and serves as the base case of our correctness theorem.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 161. Publication date: October 2022.

161:16 Jacob Laurel, Rem Yang, Shubham Ugare, Robert Nagel, Gagandeep Singh, and Sasa Misailovic

Lemma 4.9. Let 𝜎 be a valid input state. Then for any syntactic input variable 𝑥𝑖𝑛𝑖 and any non-empty

set 𝑆 ∈ P(𝐷) \ ∅, we have that

𝜎 [𝑥𝑖𝑛𝑖 [𝑆]] =
𝜕 |𝑆 |𝑥𝑖𝑛𝑖
∏

𝑗 ∈𝐴𝑐𝑡𝑖𝑣𝑒 (𝑆)

𝜕𝑥𝑖𝑛𝑗

�

�

�

(𝑥𝑖𝑛1 [∅],...,𝑥
𝑖𝑛
𝑚 [∅]) ∈R

𝑚

where 𝐴𝑐𝑡𝑖𝑣𝑒 (𝑆) is the list of all input variables 𝑥𝑖𝑛𝑗 satisfying 𝑥𝑖𝑛𝑗 [{𝑠 𝑗 }] = 1 for some 𝑠 𝑗 ∈ 𝑆 .

Proof. See Appendix. □

Computing Derivatives. Having established that a valid input state stores derivatives correctly,
the idea is to now show that after executing each statement, the derivatives are still correct.

Theorem 4.10. Let 𝜎 be a valid input state and 𝑃 be a well-formed program, and let 𝜎 ′ = J𝑃K𝐷 (𝜎).
Then for any variable 𝑥𝑖 in 𝜎

′ and any non-empty set 𝑆 ∈ P(𝐷) \ ∅, we have that

𝜎 ′[𝑥𝑖 [𝑆]] =
𝜕 |𝑆 |𝑥𝑖
∏

𝑗 ∈𝐴𝑐𝑡𝑖𝑣𝑒 (𝑆)

𝜕𝑥𝑖𝑛𝑗

�

�

�

(𝑥𝑖𝑛1 [∅],...,𝑥
𝑖𝑛
𝑚 [∅]) ∈R

𝑚

Proof. (Sketch) We show select cases with all other cases shown in the Appendix.

• Constants. For any non-empty set 𝑆 , and constant 𝑐 ∈ R, 𝜕 |𝑆 |𝑐
∏

𝑗∈𝐴𝑐𝑡𝑖𝑣𝑒 (𝑆)

𝜕𝑥𝑖𝑛𝑗

�

�

�

(𝑥𝑖𝑛1 [∅],...,𝑥
𝑖𝑛
𝑚 [∅]) ∈R

𝑚
= 0.

However, for any non-empty 𝑆 , the interpreter always assigns 0 to 𝜎 ′[𝑥𝑖 [𝑆]].
•Addition. As the current state𝜎 has been correctly initialized, before executing J𝑥𝑖 = 𝑥 𝑗+𝑥𝑘K𝐷 (𝜎)

we inductively assume (by Lemma 4.9) that for each 𝑆 , 𝜎 [𝑥 𝑗 [𝑆]] =
𝜕 |𝑆 |𝑥 𝑗
∏

𝑙∈𝐴𝑐𝑡𝑖𝑣𝑒 (𝑆)

𝜕𝑥𝑖𝑛
𝑙

�

�

�

(𝑥𝑖𝑛1 [∅],...,𝑥
𝑖𝑛
𝑚 [∅]) ∈R

𝑚

and 𝜎 [𝑥𝑘 [𝑆]] =
𝜕 |𝑆 |𝑥𝑘
∏

𝑙∈𝐴𝑐𝑡𝑖𝑣𝑒 (𝑆)

𝜕𝑥𝑖𝑛
𝑙

�

�

�

(𝑥𝑖𝑛1 [∅],...,𝑥
𝑖𝑛
𝑚 [∅]) ∈R

𝑚
. Furthermore, by linearity of derivatives, we know

that

𝜕 |𝑆 | (𝑥 𝑗 + 𝑥𝑘)
∏

𝑙∈𝐴𝑐𝑡𝑖𝑣𝑒 (𝑆)

𝜕𝑥𝑖𝑛
𝑙

�

�

�

(𝑥𝑖𝑛
1
[∅],...,𝑥𝑖𝑛𝑚 [∅])∈R

𝑚
=

𝜕 |𝑆 |𝑥 𝑗
∏

𝑙∈𝐴𝑐𝑡𝑖𝑣𝑒 (𝑆)

𝜕𝑥𝑖𝑛
𝑙

�

�

�

(𝑥𝑖𝑛
1
[∅],...,𝑥𝑖𝑛𝑚 [∅])∈R

𝑚
+

𝜕 |𝑆 |𝑥𝑘
∏

𝑙∈𝐴𝑐𝑡𝑖𝑣𝑒 (𝑆)

𝜕𝑥𝑖𝑛
𝑙

�

�

�

(𝑥𝑖𝑛
1
[∅],...,𝑥𝑖𝑛𝑚 [∅])∈R

𝑚
.

After executing the meta-semantic rule for addition J𝑥𝑖 [𝑆] = 𝑥 𝑗 [𝑆] + 𝑥𝑘 [𝑆]K(𝜎), we know that
𝜎 ′[𝑥𝑖 [𝑆]] = 𝜎 [𝑥 𝑗 [𝑆]] + 𝜎 [𝑥𝑘 [𝑆]] by the rules of the base interpreter in Fig. 5. Thus, by substitution

𝜎 ′[𝑥𝑖 [𝑆]] =
𝜕 |𝑆 |𝑥 𝑗
∏

𝑙∈𝐴𝑐𝑡𝑖𝑣𝑒 (𝑆)

𝜕𝑥𝑖𝑛
𝑙

�

�

�

(𝑥𝑖𝑛1 [∅],...,𝑥
𝑖𝑛
𝑚 [∅]) ∈R

𝑚
+

𝜕 |𝑆 |𝑥𝑘
∏

𝑙∈𝐴𝑐𝑡𝑖𝑣𝑒 (𝑆)

𝜕𝑥𝑖𝑛
𝑙

�

�

�

(𝑥𝑖𝑛1 [∅],...,𝑥
𝑖𝑛
𝑚 [∅]) ∈R

𝑚
, hence 𝜎 ′[𝑥𝑖 [𝑆]] =

𝜕 |𝑆 | (𝑥 𝑗+𝑥𝑘)
∏

𝑙∈𝐴𝑐𝑡𝑖𝑣𝑒 (𝑆)

𝜕𝑥𝑖𝑛
𝑙

�

�

�

(𝑥𝑖𝑛1 [∅],...,𝑥
𝑖𝑛
𝑚 [∅]) ∈R

𝑚
=

𝜕 |𝑆 |𝑥𝑖
∏

𝑙∈𝐴𝑐𝑡𝑖𝑣𝑒 (𝑆)

𝜕𝑥𝑖𝑛
𝑙

�

�

�

(𝑥𝑖𝑛1 [∅],...,𝑥
𝑖𝑛
𝑚 [∅]) ∈R

𝑚
. □

Complexity. While Theorem 4.10 tells us that for the predetermined set of input variables, the
derivatives will be correctly computed, as mentioned these derivatives are only with respect to a
subset of the input variables. To compute all possible derivatives with respect to all possible input
variables (for the full Jacobian or Hessian), we must rerun J𝑃K𝐷 multiple times for different (valid)
input states 𝜎 . In the simplest case, for 𝐷 = 1 (dual numbers), one needs to rerun J𝑃K1 exactly𝑚
times for functions of the form 𝑓 : R𝑚 → R𝑛 to obtain the entire Jacobian. We can generalize this
result for arbitrary 𝐷 .

Theorem 4.11. For a program 𝑃 corresponding to a function 𝑓 : R𝑚 → R𝑛 where 𝑚 > 𝐷 , to

compute all possible derivatives up to the 𝐷𝑡ℎ order, requires evaluating J𝑃K𝐷 exactly
(𝑚+𝐷−1

𝐷

)

times.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 161. Publication date: October 2022.

A General Construction for Abstract Interpretation of Higher-Order Automatic Differentiation 161:17

Proof. (Sketch) We provide the basic intuition here. First,
(𝑚+𝐷−1

𝐷

)

is the number of ways to
select 𝐷 items from a set of size𝑚, with replacement when order does not matter. The 𝐷 items
we select are precisely the 𝐷 variable we wish to differentiate with respect to. The reason why
replacement is allowed is because we can differentiate with respect to the same variable multiple
times. Likewise, the reason why order does not matter is because 𝜕

𝜕𝑥𝑖𝜕𝑥 𝑗
=

𝜕
𝜕𝑥 𝑗 𝜕𝑥𝑖

, hence we do not

need to recompute them separately. □

As we can see, for dual numbers (𝐷 = 1) this reduces to
(𝑚
1

)

=𝑚 independent forward passes, as is
well-known. While the complexity for higher-order AD seems expensive, it is the same complexity
given in Griewank and Walther [2008], and more recent work [He 2019] has noted that specifically
for higher-order derivatives, forward-mode AD is better suited than reverse mode.

5 ABSTRACT SEMANTICS OF HIGHER-ORDER AD

Our construction is the first to provide a generic approach to abstractly interpret the semantics
of higher-order AD. The key benefit of our construction is that by exposing each derivative term
explicitly in a memory state as an augmented variable, we reduce the problem of reasoning about
complex mathematical objects used in AD to reasoning about standard program states. Thus, we
can readily apply existing numerical abstract domains. Furthermore, because our formulation is
imperative, and our transformed AD program captures data-dependence across derivative terms,
we can leverage the state-based semantics during analysis to conveniently use relational abstract
domains that also track correlations between variables. This allows us to precisely track correla-
tions across derivatives (including different orders). We first define the preliminaries of abstract
interpretation suitable for our setting.

Definition 5.1. [Abstract Interpretation] The abstract interpretation primitives that our construc-
tion requires are given by the following symbols: (D#, 𝛾,⊥#,⊤#, J·K#) where D# represents the set
of abstract program states, 𝛾 : D# → D is a concretization function mapping abstract states to
sets of concrete states. Further, ⊥# and ⊤# are the abstract domain’s respective least and greatest
elements. Lastly, J·K# are sound abstract transformers for statements in the language of Fig. 4.

Given an abstract domain, we can interpret the same program syntax over the abstract domain
in a way that over-approximates the concrete program semantics, which are computed by J·K.

Definition 5.2. [Soundness] An abstract transformer J·K# for statements is sound if the following
holds: For any 𝜎# ∈ D# and any valid syntactic expression 𝐸𝑥𝑝𝑟 in the language of Fig. 4:

J𝑥𝑖 = 𝐸𝑥𝑝𝑟K(𝛾 (𝜎#)) ⊆ 𝛾 (J𝑥𝑖 = 𝐸𝑥𝑝𝑟K# (𝜎#))

where J𝑥𝑖 = 𝐸𝑥𝑝𝑟K(𝛾 (𝜎#)) = {J𝑥𝑖 = 𝐸𝑥𝑝𝑟K(𝜎 ′) : 𝜎 ′ ∈ 𝛾 (𝜎#)}. Hence, we say that the abstract
interpreter J·K# soundly over-approximates the semantics of the base interpreter J·K of Fig. 5.

5.1 Choosing an Abstract Domain

To construct an abstract interpreter J·K#𝐷 to soundly over-approximate J·K𝐷 , we use an existing
abstract interpreter J·K# defined over a numerical abstract domain that soundly over-approximates
the semantics of the base interpreter J·K. Having defined the primitives needed for the construction
in Defs. 5.1 and 5.2, we now detail what restrictions the abstract domain must satisfy.

(1) The abstract domain is numeric, where D# abstracts sets of real vectors in R |AugVars | .
(2) The concretization function 𝛾 : D# → P(R |AugVars |) maps an abstract element 𝜎# to a set of

points in R |AugVars | , where 𝛾 (𝜎#) = {𝜎 ∈ R |AugVars | : 𝜎 ∈ 𝜎#}.
(3) 𝛾 (⊥) = ∅ and 𝛾 (⊥) ⊆ 𝛾 (𝜎#) for any 𝜎#.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 161. Publication date: October 2022.

161:18 Jacob Laurel, Rem Yang, Shubham Ugare, Robert Nagel, Gagandeep Singh, and Sasa Misailovic

(4) For any arithmetic expression 𝐸𝑥𝑝𝑟 in Fig. 4, we require a sound transformer for assignments
with that expression, J𝑥𝑖 = 𝐸𝑥𝑝𝑟K# : D# → D#.

(5) (Optionally) we need an abstract test transformer J𝑥𝑖 > 𝑐K# : D# → D# for refining abstract
states with linear constraints. We also require that 𝛾 (J𝑥𝑖 > 𝑐K# (𝜎#)) ⊆ 𝛾 (𝜎#).

We provide detailed explanation of Items 4 and 5 below, but we first note a (non-exhaustive) list
of abstract domains satisfying these requirements.

Remark 3. The Interval domain, Octagon domain, Zonotope domain, DeepPoly domain, and Poly-

hedra domain can all be endowed with the necessary transformers to satisfy the requirements.

Assignment of Arithmetic Expressions. The abstract domain must have sound transformers
for assignment with arithmetic expressions of Fig. 4, which includes arithmetic primitives (e.g.,
addition and multiplication) and constants but also differentiable unary functions (e.g., exp, log).

Arithmetic Primitives. The abstract domain must provide sound transformers for all primitive
arithmetic operations: +, −, ·, and /, as well as assignments with constants. For the interval domain,
there are sound transformers for all of these. For domains like zonotopes, octagons, or polyhedra, one
can always employ linearization of the non-linear operations of · and / as in Stolfi and de Figueiredo
[2003] and Miné [2006] to construct the necessary transformers. Shi et al. [2019] has also shown
how to construct DeepPoly abstract transformers for · and /.

Differentiable Unary Functions. As our language (Fig. 4) includes unary functions, the chosen abstract
domain must provide sound transformers for the following functions: 𝜎𝑎 , SoftPlus, exp, and log. As
mentioned in Section 4.5, the derivatives of each of these functions are given in terms of elementary
arithmetic combinations of functions already in the language (e.g., 𝜎 ′𝑎 (𝑥) = 𝜎𝑎 (𝑥) · (1 − 𝜎𝑎 (𝑥)),
hence this set of functions is łclosedž under nth derivatives. As with the arithmetic primitives,
for the interval domain, there are sound transformers for all of these, while for zonotopes and
polyhedra, one would need to soundly linearize these non-linear functions, such as the Chebyshev
method for zonotopes [Stolfi and de Figueiredo 2003], the polyhedral linearization of Miné [2006],
or using the methods of Ryou et al. [2021] for the DeepPoly domain.

Automatically Improving Precision. Beyond naively composing existing abstract transform-
ers from a numerical domain, we also want to devise a method for automatically improving the
precision of the analysis. Having an optimal transformer for one primitive function, does not
necessarily imply one has an optimal transformer for all derivatives of that function, particu-
larly if the derivative requires the composition of multiple primitive function transformers (e.g.,
𝜎 ′𝑎 = 𝜎𝑎 (𝑥) · (1 − 𝜎𝑎 (𝑥)) requires composing transformers for 𝜎𝑎 and multiplication), since naive,
off-the-shelf composition of numerical abstract transformers can be non-optimal.
To avoid this issue, we leverage analytical properties of the derivatives of the functions to

systematically improve the precision of J·K#𝐷 . We now describe an optional requirement on the
domain that can improve the abstraction’s precision. By using an abstract test operator J𝑥𝑖 >

𝑐K# (𝜎#), we can refine the abstract state 𝜎# using analytical information about the range of the
function’s derivatives. This allows us to enforce constraints, such as how every odd derivative of 1

𝑥

is necessarily negative. However, one can always define J𝑥𝑖 > 𝑐K# (𝜎#) = 𝜎# (the identity), hence
why this step is optional. By requiring 𝛾 (J𝑥𝑖 > 𝑐K# (𝜎#)) ⊆ 𝛾 (𝜎#), this step never loses precision.

Remark 4. We do not need a widening operator, since all the programs expressible in the syntax of

Fig. 4 are loop-free. We also do not require a join operator ⊔ or meet operator ⊓.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 161. Publication date: October 2022.

A General Construction for Abstract Interpretation of Higher-Order Automatic Differentiation 161:19

5.2 Abstract Meta-Semantics

We now provide an abstract meta-semantics which shows how to leverage an existing numerical
abstract domain satisfying our criteria to construct a sound abstract interpreter for 𝐷 th-order
AD. We highlight that the ease in defining our abstract semantics stems from design choices
made in constructing our concrete semantics (Definition 4.5). However, merely using the abstract
version of each arithmetic operator naively is imprecise, hence we will also see how the abstract
meta-semantics leverages mathematical properties of differentiable functions to improve precision.

Definition 5.3. The abstract meta-semantics for performing 𝐷-degree Taylor polynomial forward-
mode abstract AD are a parametric (abstract) semantics given by J·K#𝐷 : (𝑃,D

#) → D#, where
𝑃 is a program in the syntax of Fig. 4. The abstract meta-semantics are parametric in both the
order of derivative 𝐷 , as well as the underlying numeric abstract domain D# and its associated
abstract transformers J·K#. The abstract meta-semantics ultimately return an abstract state, 𝜎# at
the program exit.

This is in contrast to the concrete meta-semantics of Definition 4.5 which are parametric only
in 𝐷 , (they have a fixed base interpreter, J·K). This is because J·K#𝐷 can use any set of abstract
transformers J·K# satisfying the criteria of Section 5.1, thus the construction is configurable. This
also allows the correctness to be easily established ś proving that the abstract meta-semantics
soundly over-approximate the concrete meta-semantics reduces to showing that the instantiated
numerical abstract domain over-approximates the base interpreter at each step.

Addition. The meta-semantics of abstract addition follow very similarly to the concrete case, by
adding respective derivative terms (via linearity) albeit using the abstract interpreter J·K# of the
chosen numerical abstract domain instead of the base interpreter J·K, noting that by the assumptions
of Section 5.1, J·K# has sound transformers for (abstract) addition of two variables.

J𝑥𝑖 = 𝑥 𝑗 + 𝑥𝑘K
#
𝐷 (𝜎

#) ≜ for 𝑑 ∈ {0, ..., 𝐷} :
for 𝑆 ∈ P𝑑 ({1, ..., 𝐷}) :

𝜎#
= J𝑥𝑖 [𝑆] = 𝑥 𝑗 [𝑆] + 𝑥𝑘 [𝑆]K

(𝜎#)

return 𝜎#

Multiplication. The rule for multiplication follows an abstracted form of the generalized Leibniz
formula, again noting by assumption that J·K# has sound transformers for assignments involving
the sum and product of variables and that 𝑆 \ 𝑃 represents set subtraction.

J𝑥𝑖 = 𝑥 𝑗 ∗ 𝑥𝑘K
#
𝐷 (𝜎

#) ≜ for 𝑑 ∈ {0, ..., 𝐷} :
for 𝑆 ∈ P𝑑 ({1, ..., 𝐷}) :

𝜎#
= J𝑥𝑖 [𝑆] =

∑

𝑃 ∈P(𝑆) 𝑥 𝑗 [𝑃] · 𝑥𝑘 [𝑆 \ 𝑃]K
(𝜎#)

return 𝜎#

Constants. For this case, we need to assign each augmented variable to a constant (either 𝑐 or
0), hence all this requires is that the abstract domain has sound transformers constant assignment.

Unary Functions. As in the concrete meta-semantics, with unary functions, we must use Faa di
Bruno’s formula (Def. 4.6). In the computation of the first through 𝐷 th derivatives of 𝑓 (stored in
𝑑𝑥𝑖 [1] through 𝑑𝑥𝑖 [𝐷]), since we know the derivatives’ analytical forms, we also know their valid
ranges, hence we can refine the abstract state 𝜎# to use this knowledge via the J𝑥𝑖 > 𝑐K# abstract
test transformer. This is helpful for enforcing domain-specific knowledge. Since the refinement
depends on the particular function, we only show cases for specific unary functions.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 161. Publication date: October 2022.

161:20 Jacob Laurel, Rem Yang, Shubham Ugare, Robert Nagel, Gagandeep Singh, and Sasa Misailovic

J𝑥𝑖 = 𝑐K#𝐷 (𝜎) ≜ for 𝑆 ∈ P({1, ..., 𝐷}) :
i f 𝑆 = ∅ :

𝜎 = J𝑥𝑖 [∅] = 𝑐K# (𝜎)
e l se :

𝜎 = J𝑥𝑖 [𝑆] = 0K# (𝜎)
return 𝜎

Division. As noted, division is composition with the function 𝑓 (𝑥) = 1
𝑥
, hence we again use

Faa di Bruno’s formula. Additionally, every odd derivative of 1
𝑥
is necessarily negative, hence we

can apply the abstract test operator to refine 𝜎#. Lastly because the derivatives (𝑑𝑥𝑖) that are used
to compute 𝑥𝑖 [𝑆] for 𝑆 ≠ ∅ are given in terms of the real part 𝑥𝑖 [∅], when instantiated with a
relational domain like zonotopes, we are tracking correlations across derivative orders.

J𝑥𝑖 = 1/𝑥 𝑗 K
#
𝐷 (𝜎

#) ≜ J𝑥𝑖 [∅] = 1/(𝑥 𝑗 [∅])K
(𝜎#)

𝜎#
= J𝑑𝑥𝑖 [1] = −𝑥𝑖 [∅] · 𝑥𝑖 [∅]K

(𝜎#)

for 𝑑 ∈ {2, ..., 𝐷} :
𝜎#

= J𝑑𝑥𝑖 [𝑑] = −𝑑 · 𝑥𝑖 [∅] · 𝑑𝑥𝑖 [𝑑 − 1]K
(𝜎#)

i f 𝑑 odd :
𝜎#

= J𝑑𝑥𝑖 [𝑑] < 0K# (𝜎#)

for 𝑆 ∈ P𝑑 ({1, ..., 𝐷}) :
𝜎#

= J𝑥𝑖 [𝑆] =
∑

𝑃 ∈𝑃𝑎𝑟𝑡 (𝑆) 𝑑𝑥𝑖 [|𝑃 |] ·
∏

𝐵∈𝑃 𝑥 𝑗 [𝐵]K
(𝜎#)

return 𝜎#

Exp and Log. Since all 𝑛𝑡ℎ derivatives of exp are also exp, and the exp function is strictly positive,
we can always refine the abstract state with this constraint. Additionally, we can exploit the
fact that all derivatives of exp are also exp. Therefore, we only need to compute this once via the
J𝑥𝑖 [∅] = 𝑒𝑥𝑝 (𝑥 𝑗 [∅])K

(𝜎#), and then we canmerely copy the result into the variables corresponding
to each derivative 𝑑𝑥𝑖 . However, the benefit of this is not only computational savings, but also the
potential for improved precision if instantiating the construction with a relational abstract domain.
Since all the 𝑑𝑥𝑖 variables are directly used to compute the 𝑥𝑖 [𝑆] for 𝑆 ≠ ∅, if J·K# is instantiated
with a relational domain, one is able to track correlations across those derivatives.

J𝑥𝑖 = 𝑒𝑥𝑝 (𝑥 𝑗)K
#
𝐷 (𝜎) ≜ 𝜎#

= J𝑥𝑖 [∅] = 𝑒𝑥𝑝 (𝑥 𝑗 [∅])K
(𝜎#)

𝜎#
= J𝑥𝑖 [∅] > 0K# (𝜎#)

for 𝑑 ∈ {1, ..., 𝐷} :
𝜎#

= J𝑑𝑥𝑖 [𝑑] = 𝑥𝑖 [∅]K
(𝜎#)

for 𝑆 ∈ P𝑑 ({1, ..., 𝐷}) :
𝜎#

= J𝑥𝑖 [𝑆] =
∑

𝑃 ∈𝑃𝑎𝑟𝑡 (𝑆) 𝑑𝑥𝑖 [|𝑃 |] ·
∏

𝐵∈𝑃 𝑥 𝑗 [𝐵]K
(𝜎#)

return 𝜎#

Abstract Sequencing. Abstractly interpreting the sequencing of multiple statements follows
similarly to the concrete meta-semantics.

J𝑃1; 𝑃2K
#
𝐷 (𝜎

#) ≜ J𝑃2K
#
𝐷

(

J𝑃1K
#
𝐷 (𝜎

#)
)

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 161. Publication date: October 2022.

A General Construction for Abstract Interpretation of Higher-Order Automatic Differentiation 161:21

Remark 5. Since all variables and their derivatives are included in the abstract state 𝜎#, when

instantiated with a relational domain (e.g., zonotopes), this construction produces an abstract interpreter

that relationally tracks dependencies across derivatives and derivative orders.

5.3 Soundness

Intuitively the soundness follows from construction. By composing abstract transformers at each
step that are sound for each primitive, the end construction soundly over-approximates the original
concrete semantics. However, we now state this formally.

Theorem 5.4. (Soundness of Abstraction) For any program 𝑃 expressible in the syntax of Fig. 4,

𝐷 ∈ N, 𝜎# ∈ D# and any 𝜎 ∈ 𝛾 (𝜎#), then we have that J𝑃K𝐷 (𝜎) ∈ 𝛾 (J𝑃K#𝐷 (𝜎
#)).

Thus, we can compute a sound over-approximation of the set of values that the (possibly higher-
order) derivatives take, provided all the requirements of Section 5.1 are satisfied.

Proof. (Sketch) We provide sketches of representative cases (others detailed in the Appendix):
• Addition: We need to show that for any 𝐷 , 𝜎# ∈ D# with 𝜎 ∈ 𝛾 (𝜎#) that the following holds:

J𝑥𝑖 = 𝑥 𝑗 + 𝑥𝑘K𝐷 (𝜎) ∈ 𝛾 (J𝑥𝑖 = 𝑥 𝑗 + 𝑥𝑘K
#
𝐷 (𝜎

#)). The idea is straightforward, for each application of
𝜎 = J𝑥𝑖 [𝑆] = 𝑥 𝑗 [𝑆]+𝑥𝑘 [𝑆]K(𝜎) in the for loop of the meta-semantic rule for J𝑥𝑖 = 𝑥 𝑗 +𝑥𝑘K𝐷 (𝜎), there
is the corresponding application 𝜎#

= J𝑥𝑖 [𝑆] = 𝑥 𝑗 [𝑆] + 𝑥𝑘 [𝑆]K
(𝜎#), thus by the initial assumption

that 𝜎 ∈ 𝛾 (𝜎#), and that fact that J·K# soundly over-approximates J·K (also by assumption) for every
application (regardless of𝐷) we know J𝑥𝑖 [𝑆] = 𝑥 𝑗 [𝑆]+𝑥𝑘 [𝑆]K(𝜎) ∈ 𝛾 (J𝑥𝑖 [𝑆] = 𝑥 𝑗 [𝑆]+𝑥𝑘 [𝑆]K

(𝜎#)).
• Division: We need to show that for any 𝐷 , 𝜎# ∈ D# with 𝜎 ∈ 𝛾 (𝜎#) that the following

holds: J𝑥𝑖 = 1/𝑥 𝑗 K𝐷 (𝜎) ∈ 𝛾 (J𝑥𝑖 = 1/𝑥 𝑗 K
#
𝐷 (𝜎

#)). The idea is the same, we note that for each
application 𝜎 = J𝑑𝑥𝑖 [𝑑] = −𝑑 · 𝑥𝑖 [∅] · 𝑑𝑥𝑖 [𝑑 − 1]K(𝜎) in the concrete meta-semantics, that the
corresponding application 𝜎#

= J𝑑𝑥𝑖 [𝑑] = −𝑑 · 𝑥𝑖 [∅] · 𝑑𝑥𝑖 [𝑑 − 1]K# (𝜎#) in the abstract meta-
semantics soundly over-approximates it. To address the application of J𝑑𝑥𝑖 [𝑑] < 0K# (𝜎#), we note
that in the concrete semantics, 𝑑𝑥𝑖 [𝑑] will never be greater than 0 if 𝑑 is odd. Thus, even after
applying this refinement, we still have that 𝜎 ∈ 𝛾 (𝜎#). Likewise, for each application 𝜎 = J𝑥𝑖 [𝑆] =
∑

𝑃 ∈𝑃𝑎𝑟𝑡 (𝑆) 𝑑𝑥𝑖 [|𝑃 |] ·
∏

𝐵∈𝑃 𝑥 𝑗 [𝐵]K(𝜎) in the concrete meta-semantics, the corresponding application

𝜎#
= J𝑥𝑖 [𝑆] =

∑

𝑃 ∈𝑃𝑎𝑟𝑡 (𝑆) 𝑑𝑥𝑖 [|𝑃 |] ·
∏

𝐵∈𝑃 𝑥 𝑗 [𝐵]K
(𝜎#) soundly over-approximates it.

• Sequencing: It represents an inductive case. By assumption for any 𝜎 ∈ 𝛾 (𝜎#), J𝑃1K𝐷 (𝜎) ∈
𝛾 (J𝑃1K

#
𝐷 (𝜎

#)). Likewise by assumption for any 𝜎2 ∈ 𝛾 (𝜎
#
2) J𝑃2K𝐷 (𝜎2) ∈ 𝛾 (J𝑃2K

#
𝐷 (𝜎

#
2)). Hence, by

substituting 𝜎2 = J𝑃1K𝐷 (𝜎) and 𝜎
#
2 = J𝑃1K

#
𝐷 (𝜎

#), we obtain J𝑃1; 𝑃2K𝐷 (𝜎) ∈ 𝛾 (J𝑃1; 𝑃2K
#
𝐷 (𝜎

#)). □

6 INSTANTIATIONS

We formally describe instantiations of our framework, which we will later evaluate in order to study
the effects of first vs. higher derivatives as well as relational vs. non-relational abstract domains.

6.1 Interval AD

While interval arithmetic has been applied to AD, our construction is more general, thus using the
interval domain is but one instantiation of our framework.

Interval Domain. The interval domain, denoted D#
= P(IR |𝐴𝑢𝑔𝑉𝑎𝑟𝑠 |), is among the simplest

numeric abstract domains where in an abstract state 𝜎# a variable is mapped to an interval [𝑎, 𝑏] ∈
IR, hence 𝜎# : AugVar → IR. The interval domain is non-relational.

First Derivatives. Our construction can be used to produce the Dual Interval domain of Laurel
et al. [2022a]. This is an instantiation of our framework where 𝐷 = 1 with the interval domain.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 161. Publication date: October 2022.

161:22 Jacob Laurel, Rem Yang, Shubham Ugare, Robert Nagel, Gagandeep Singh, and Sasa Misailovic

Higher Derivatives. We may also encode an interval abstraction of the hyperdual numbers of
Fike and Alonso [2011] using our framework, which allows us to obtain interval bounds on second
derivatives. This is done by instantiating our construction with 𝐷 = 2 and the interval domain.

6.2 Zonotope AD

To the best of our knowledge, prior to our work, there has been no general zonotope abstract
interpretation for forward-mode AD, especially for higher-order derivatives.

Zonotope Abstract Domain. We first describe the zonotope abstract domain, which we denote
with D#

= Zono. The abstract state 𝜎# ∈ Zono maps each variable to an affine form, where an
affine form is a tuple (𝑐, 𝑔) with center 𝑐 ∈ R and 𝑔 ∈ R |generators | where |generators | is the number
of noise symbols (also called generators). For a variable 𝑥 , to denote its affine form, we will write

𝑥 = 𝑐 +
∑ |generators |
𝑖=1 𝑔𝑖𝜖𝑖 , where each noise symbol 𝜖𝑖 ∈ [−1, 1]. To index a variable’s affine form in

the abstract state 𝜎#, we may write 𝜎# [𝑥] = 𝑐 +
∑ |generators |
𝑖=1 𝑔𝑖𝜖𝑖 as well as 𝜎

[𝑥] [𝑐] and 𝜎# [𝑥] [𝑔𝑖]

to access the coefficients of the center and noise symbol terms. Because the 𝜖𝑖 are shared across
variables, this is a relational domain; furthermore, the set of states encoded by 𝜎# is exactly a
zonotope. This can be seen from the concretization function 𝛾 : Zono→ P(R |AugVars |) defined as:

𝛾 (𝜎#) = {(𝑥0, ..., 𝑥 |AugVars |) ∈ R
|AugVars |

�

�∀𝑗, 𝑖 : 𝑥 𝑗 = 𝜎# [𝑥 𝑗] [𝑐]+

|generators |
∑︁

𝑖=1

𝜎# [𝑥 𝑗] [𝑔𝑖] ·𝜖𝑖 ∧ 𝜖𝑖 ∈ [−1, 1]}.

As mentioned in Albarghouthi [2021], |generators | grows as the program executes since new
noise symbols (the 𝜖𝑖 ∈ [−1, 1]) are dynamically added with each non-linear operation (e.g.,
multiplication, 𝜎𝑎 (𝑥), etc.). However, the zonotope domain loses no precision when encoding affine
transformations, since these can be done precisely in the domain.

One can also convert an affine form 𝑥 = 𝑐 +
∑ |generators |
𝑖=1 𝑔𝑖𝜖𝑖 to an interval [𝑙𝑏 (𝑥), 𝑢𝑏 (𝑥)] ∈ IR

where the lower bound 𝑙𝑏 (𝑥) is given as 𝑙𝑏 (𝑥) = 𝑐 −
∑ |generators |
𝑖=1 |𝑔𝑖 | and likewise an upper bound

can be computed as 𝑢𝑏 (𝑥) = 𝑐 +
∑ |generators |
𝑖=1 |𝑔𝑖 |. This will prove useful when constructing sound

transformers for arithmetic primitives.

Differentiable Zonotope Transformers. While the construction of Section 5 shows us how
to produce a 𝐷 th-order forward-mode AD abstract interpreter J·K#𝐷 using the chosen abstract
domain D#, it assumes the existence of sound transformers, J·K#, for the arithmetic functions and
gives no way to produce them. However, for zonotopes, prior works [Jordan and Dimakis 2021;
Singh et al. 2018a] give sound transformers for some (e.g., tanh), but not all of the functions we
support. Therefore, when instantiating with zonotopes, we need an automatic construction for
sound differentiable function transformers. To do so, we use the Chebyshev construction [Fryazinov
et al. 2010; Stolfi and de Figueiredo 2003]:

Definition 6.1. Given a function 𝑓 : R→ R that is bounded and twice differentiable on some in-
terval [𝑙𝑏 (𝑥), 𝑢𝑏 (𝑥)] ∈ IR, such that 𝑓 ′ is invertible and 𝑓 ′′ does not change signs on [𝑙𝑏 (𝑥), 𝑢𝑏 (𝑥)],

then for an affine form 𝑥 = 𝑐 +
∑ |generators |
𝑖=1 𝑔𝑖𝜖𝑖 , the affine form for 𝑦 = 𝑓 (𝑥) can be given as:

𝑦 = (𝛼 · 𝑐 + 𝜁) +
(

|generators |
∑︁

𝑖=1

(𝛼 · 𝑔𝑖)𝜖𝑖

)

+ 𝛿𝜖𝑛𝑒𝑤,

where 𝛼 =
𝑓 (𝑢𝑏 (𝑥))−𝑓 (𝑙𝑏 (𝑥))

𝑢𝑏 (𝑥)−𝑙𝑏 (𝑥)
, 𝑟 (𝑣) =

𝑓 (𝑢𝑏 (𝑥))−𝑓 (𝑙𝑏 (𝑥))

𝑢𝑏 (𝑥)−𝑙𝑏 (𝑥)
(𝑣 − 𝑙𝑏 (𝑥)) + 𝑓 (𝑙𝑏 (𝑥)), 𝑢 = 𝑓 ′−1 (𝛼), 𝜁 =

−𝛼𝑢 +
𝑓 (𝑢)+𝑟 (𝑢)

2
and 𝛿 =

|𝑓 (𝑢)−𝑟 (𝑢) |

2
. We refer to this formula as the Chebyshev construction for 𝑓 .

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 161. Publication date: October 2022.

A General Construction for Abstract Interpretation of Higher-Order Automatic Differentiation 161:23

The Chebyshev construction gives us sound zonotope transformers for the following functions:
SoftPlusa (𝑥), log(𝑥), exp(𝑥), and

1
𝑥
. For the other functions, we can use existing zonotope trans-

formers (e.g., those in Singh et al. [2018a]) or just default to the interval domain transformers. We
can then collectively use all of these abstract transformers in the general construction of J·K#𝐷 .

Theorem 6.2. When 𝐷 = 2 and when the abstract domain is the zonotope domain, J·K𝐷 computes

a zonotope abstraction of the hyper-dual numbers of Fike and Alonso [2011].

Precision. For many functions, the zonotope transformers are strictly more precise than the
interval ones. As mentioned in [Fryazinov et al. 2010; Stolfi and de Figueiredo 2003], the Chebyshev
construction is optimal in the input-output plane, hence it gives the same guarantees as Singh et al.
[2018a]. The zonotope transformers in this case are incomparable to the interval ones. We also
found that existing abstract test transformers for zonotopes [Jeannet and Miné 2009; Singh et al.
2017] do not boost precision, but increase cost. Hence, when instantiating our construction with
zonotopes, we use the identity function J𝑥𝑖 > 𝑐K(𝜎#) = 𝜎# for the tests.

7 CASE STUDIES

We now present a set of case studies that highlight the benefits of an abstraction supporting both
higher-order derivatives and more precise abstract domains.

7.1 Methodology

We briefly describe the experimental setup and the network architectures used in our experiments.
We ran our experiments on a 3.70 GHz Intel Xeon W-2135 CPU with 32 GB of main memory.
For the first case study on the robust interpretation of first- and second-order effects, we trained
a 3-layer neural network with 5 inputs, 64 neurons in the first hidden layer, 10 neurons in the
second hidden layer, and 1 output neuron to approximate a 5-input, 1-output synthetic function
polynomial of degree two with five interactions; the network uses the SoftPlus activation function
after every layer. For the Lipschitz certification case study, we trained four fully connected networks
on the MNIST [LeCun 1998] image classification dataset (which contains 70,000 28 × 28 images
of handwritten digits) ś three are smaller networks with 3, 4, and 5 layers having 100 neurons
in each hidden layer, and one is the FFNNBig architecture from Singh et al. [2019] consisting of
4,106 neurons (4 hidden layers of 1,024 neurons each). Each hidden layer is followed by a SoftPlus
activation function. All networks attain over 98% accuracy on the test set. For the perturbation
function, we consider the Haze perturbation studied in Paterson et al. [2021]. For all experiments,
we also present runtimes for the analyses.

Implementation. The instantations of our framework for both first and second derivatives on the
interval and zonotope domains were all implemented in PyTorch.

7.2 Robust Derivative-Based Interpretations

As neural networks are notoriously hard to understand, significant work has focused on constructing
more interpretable explanations, in order to understand which features are most relevant to
the network’s outputs. A standard way of interpreting and explaining neural networks involves
computing derivatives of the network’s outputs with respect to their inputs [Ancona et al. 2018;
Janizek et al. 2021]. However, prior work has shown that it is not enough to generate explanations
for scalar points; rather, explanations should be robust, hence why Fel et al. [2022] used robust
interval explanations. Our case study serves to show how our construction allows a user to compute
provably robust interpretations via derivative-based first-order feature attributions and second-
order feature interactions. For our experiments, we uniformly generate 5 random inputs in the

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 161. Publication date: October 2022.

161:24 Jacob Laurel, Rem Yang, Shubham Ugare, Robert Nagel, Gagandeep Singh, and Sasa Misailovic

Table 1. Improved bounds on Jacobian by using

zonotopes over intervals.

Jacobian Entry Width Reduction Factor

𝐽1 4.57x

𝐽2 4.51x

𝐽3 4.76x

𝐽4 4.20x

𝐽5 4.39x

Fig. 6. Bounds on Jacobian entries via the interval

and zonotope abstract domains.

Table 2. Improved bounds on Hessian by using

zonotopes over intervals.

Width Red. 𝐻𝑖,1 𝐻𝑖,2 𝐻𝑖,3 𝐻𝑖,4 𝐻𝑖,5

𝐻1, 𝑗 6.98x 5.69x 6.40x 5.31x 5.43x

𝐻2, 𝑗 4.97x 4.65x 4.07x 4.41x

𝐻3, 𝑗 4.64x 4.33x 4.62x

𝐻4, 𝑗 3.92x 4.08x

𝐻5, 𝑗 4.76x

Fig. 7. Bounds on Hessian entries via the interval

and zonotope abstract domains.

range [0, 1) and enclose each input in an interval of ±0.01. We then soundly bound the first and
second derivatives of the neural network (trained to approximate a polynomial as described in
Section 7.1) with respect to these input ranges. We repeat this experiment for 5 different seeds.

Table 1 and Table 2 demonstrate the precision improvement of the zonotope domain on bounding
the Jacobian and the Hessian, respectively. In both tables, each cell presents the geometric mean
over 5 trials of the ratio of the interval-bounded derivative’s width over its zonotope-bounded
counterpart. For zonotopes and intervals, the average runtimes across all trials are 0.014 and 0.009
seconds for the first-order information and 0.23 and 0.11 seconds for the second-order information,
respectively. This demonstrates that the substantial increase in precision when using the zonotope
domain does not incur a large runtime overhead. Furthermore, performing the separate passes to
compute each Jacobian or Hessian term takes virtually the same time, meaning that the input one
differentiates with respect to does not affect the runtime.

We next show detailed results for the trial that yields the median improvement in precision when
using zonotopes over intervals (the other trials show the same trend). Fig. 6 presents the bounds on
the first derivatives (the Jacobian). The entries on the x-axis correspond to the first derivative of the
network’s output node with respect to each of the 5 input variables. The value of the y-axis denotes
the value of the derivative. We compare derivatives computed at sampled scalar points with both
an interval and zonotope instantiation of our framework for first derivatives. The zonotope bounds
on the Jacobian entries are much tighter than the bounds computed via the interval domain, both
of which enclose the sampled points (shown in multiple colors).
We also compute the second derivatives to study the magnitude of interactions between input

variables over an entire region of the input space. Fig. 7 presents the results (for the same trial
as in Fig. 6). The entries along the x-axis represent Hessian terms instead of just individual input
derivatives (as in Fig. 6). As before, the y-axis represents the magnitude of the (second) derivative.
Zonotope bounds on the second derivatives are also much more precise at enclosing the sampled

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 161. Publication date: October 2022.

A General Construction for Abstract Interpretation of Higher-Order Automatic Differentiation 161:25

10010−110−210−310−4

𝛼𝑚𝑎𝑥

1000

2000

3000

4000

5000

L
ip
sc
h
it
z
C
o
n
st
a
n
t

3-Layer Network

Zonotope

Interval

10010−110−210−310−4

𝛼𝑚𝑎𝑥

0

10000

20000

30000

40000

50000

L
ip
sc
h
it
z
C
o
n
st
a
n
t

4-Layer Network

10010−110−210−310−4

𝛼𝑚𝑎𝑥

0

100000

200000

300000

400000

L
ip
sc
h
it
z
C
o
n
st
a
n
t

5-Layer Network

(a) Average upper bound on the local Lipschitz constant for the zonotope and interval domains.

10010−110−210−310−4

𝛼𝑚𝑎𝑥

1

2

3

4

5

L
ip
sc
h
it
z
C
o
n
st
a
n
t
R
a
ti
o

3-Layer Network

10010−110−210−310−4

𝛼𝑚𝑎𝑥

0

5

10

15

20

25

30

L
ip
sc
h
it
z
C
o
n
st
a
n
t
R
a
ti
o

4-Layer Network

10010−110−210−310−4

𝛼𝑚𝑎𝑥

0

50

100

150

200

L
ip
sc
h
it
z
C
o
n
st
a
n
t
R
a
ti
o

5-Layer Network

(b) Increase in precision of the zonotope domain over the interval domain.

Fig. 8. Lipschitz certification of 3-layer (left), 4-layer (center), and 5-layer (right) MNIST networks against the

haze perturbation on 1,000 correctly classified test-set images. The top row (Fig. 8a) presents the average upper

bound on the local Lipschitz constant for both the zonotope and interval domains. The bottom row (Fig. 8b)

presents the increase in precision of the zonotope domain, computed as the ratio of the interval-bounded

Lipschitz constant over the zonotope-bounded Lipschitz constant.

points than standard interval domain bounds, which stems from the fact that relational domains
allow us to preserve correlation across derivative orders, thus improving precision.

7.3 Lipschitz Certification

Our second case study involves bounding the local Lipschitz constant of neural networks with
respect to semantic perturbations, as in [Laurel et al. 2022a; Yang et al. 2022]. We study networks
trained on MNIST data and consider the Haze perturbation, defined as the pixelwise transformation
𝑝𝛼 (𝑥𝑖 ;𝛼) = (1 − 𝛼)𝑥𝑖 + 𝛼 , where 𝑥𝑖 is the value of each pixel and 𝛼 represents the haze amount. Let
𝑓 denote a neural network. Then, given an image 𝑥 , we compute a sound upper bound on the (local)
Lipschitz constant of 𝑓 (𝑝𝛼 (𝑥 ;𝛼)) with respect to 𝛼 over a range of haze values, specifically where
𝛼 lies in [0, 𝛼𝑚𝑎𝑥]. The parameter 𝛼𝑚𝑎𝑥 represents the maximum haze amount, and we consider
values of 𝛼𝑚𝑎𝑥 ∈ {10

−𝑘/4 · 2 : 𝑘 ∈ [2, 18]}. We evaluate on the zonotope domain (enabled by this
work) and compare with Laurel et al. [2022a] (as no other work can handle this setting).

Fig. 8 shows the Lipschitz certification results for the 3-layer (left), 4-layer (center), and 5-layer
(right) MNIST networks. Fig. 8a presents the computed Lipschitz constant bounds. The x-axis shows
the value of 𝛼𝑚𝑎𝑥 , and the y-axis shows the upper bound on the Lipschitz constant computed with
the zonotope and interval domains (smaller is better). Fig. 8b presents the increase in precision of
the zonotope domain. The x-axis again shows the value of 𝛼𝑚𝑎𝑥 , and the y-axis shows the ratio of
the interval-bounded Lipschitz constants over the zonotope-bounded Lipschitz constants (larger is
better). For each plot, the x-axis uses a logarithmic scale, while the y-axis uses a linear scale. Each

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 161. Publication date: October 2022.

161:26 Jacob Laurel, Rem Yang, Shubham Ugare, Robert Nagel, Gagandeep Singh, and Sasa Misailovic

data point is the average over the first 1,000 correctly classified test set images. For the 3-, 4-, and
5-layer networks, the average zonotope runtimes are 2.8, 4.1, and 5.9 milliseconds per image and the
average interval runtimes are 2.9, 3.2, and 4.0 milliseconds per image, respectively. These runtimes
showcase how our analysis, even when using a precise relational domain, is fast and scalable.
AD with zonotopes is always more precise than AD with intervals ś the zonotope-bounded

Lipschitz constants are always smaller. Compared to intervals, zonotopes are up to 6×, 31×, and
216× more precise and the computed Lipschitz constants are up to 3374, 39105, and 382755 smaller
for the 3-, 4-, and 5-layer networks, respectively. This showcases how AD with intervals is much
more over-approximate for deeper networks, while zonotope AD retains much more precision.
For each network, we see a similar trend across values of 𝛼𝑚𝑎𝑥 . Fig. 8a shows that as 𝛼𝑚𝑎𝑥 (i.e.,

the range of perturbation) increases, the absolute difference between the interval- and zonotope-
bounded Lipschitz constant increases significantly. For small perturbation ranges (when 𝛼𝑚𝑎𝑥 <

10−3), the Lipschitz constant between the two domains are similar in magnitude. Fig. 8b shows that
for small values of 𝛼𝑚𝑎𝑥 , both domains are quite precise, since the input range is very small. For
large values of 𝛼𝑚𝑎𝑥 , both domains incur larger degrees of over-approximation (though intervals
are much more over-approximate). This is why the relative increase in precision of zonotopes over
intervals is not as great for both ends of the input range. Zonotopes are relatively most precise
for an input range that is around 10−1.5. The maxima in Fig. 8b exactly correspond to the points
in Fig. 8a where the zonotope curve already asymptotes (i.e., induces little over-approximation),
while the interval curve is still very over-approximate. Zonotopes allow us to obtain much tighter
bounds on neural networks’ Lipschitz constants with respect to semantic perturbations than the
previous interval-domain work of Laurel et al. [2022a].

10010−110−210−310−4

𝛼𝑚𝑎𝑥

103

104

105

106

107

108

L
ip
sc
h
it
z
C
o
n
st
a
n
t

Zonotope

Interval

10010−110−210−310−4

𝛼𝑚𝑎𝑥

101

102

103

104

L
ip
sc
h
it
z
C
o
n
st
a
n
t
R
a
ti
o

Fig. 9. Top: Average local Lipschitz constant

upper bounds (lower is better) for the zono-

tope and interval domains on FFNNBig. Bot-

tom: the increase in precision of the zono-

tope over the interval domain.

Our approach can also scale to larger networks: Fig. 9
shows the Lipschitz certification results on the FFNNBig
architecture. All axes are in log scale for clarity; as before,
each data point is the average over the first 1,000 cor-
rectly classified test images. The average zonotope and
interval runtimes for this experiment are 0.58 and 0.12
seconds per image, respectively. Compared to the inter-
val domain, our zonotope domain construction obtains
Lipschitz constants that are up to 11,850× more precise,
and the computed Lipschitz constants are up to 4.67×108

smaller. Again, we can observe that using the more pre-
cise zonotope domain (versus just intervals) increases
analysis precision significantly for larger networks, high-
lighting the importance of our analysis.

8 RELATED WORK

To the best of our knowledge, there is not any work that
provides a general construction for abstract interpreta-
tion of higher-order AD.

Higher-Order AD. Higher-order forward-mode AD
has been explored going back to Griewank et al. [2000]
and Karczmarczuk [2001]. Pearlmutter and Siskind [2007]
also proposed a forward-mode scheme; then, later imple-
mentations in JAX [Bettencourt et al. 2019], 𝜆𝑆 [Sherman et al. 2021], and the work of Huot et al.
[2021] also followed in this spirit. In particular, 𝜆𝑆 also supports Clarke Jacobians. However, all

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 161. Publication date: October 2022.

A General Construction for Abstract Interpretation of Higher-Order Automatic Differentiation 161:27

of these works only give concrete (and not abstract) semantics for AD. Additionally, unlike our
concrete semantics, Huot et al. [2021]; Karczmarczuk [2001]; Krawiec et al. [2022]; Pearlmutter
and Siskind [2007]; Sherman et al. [2021] all define their concrete semantics in functional styles,
whereas we use an imperative semantics (that generalizes Fike and Alonso [2011]) for ease in
building the formalism. Lastly, while we refer to our semantics as propagating tuples of Taylor
coefficients, these are technically closer to Tensor coefficients of Griewank and Walther [2008], as
our tuple coefficients are unscaled by factorial terms.

Abstract Interpretation of AD. As pointed out in Laurel et al. [2022a] and Vassiliadis et al.
[2016], there is very little work on Abstract Interpretation for AD. Most recently, Laurel et al.
[2022a] developed an interval abstract interpretation for bounding Clarke Jacobians; however, they
cannot support relational domains or higher derivatives. Jordan and Dimakis [2021] provide a
way to propagate zonotopes through vector-Jacobian products, but their formalism, soundness
guarantees, and implementation are only valid for first derivatives. The benefit of their work is that
beyond improving precision, by capturing linear dependencies between derivative terms, they can
solve linear programming optimization problems defined over the derivative terms in closed form.
Other works like Vassiliadis et al. [2016] and Mangal et al. [2020] use the interval domain to

bound AD, but their works cannot use any relational domain (e.g., zonotopes or polyhedra). Deussen
[2021] can abstract higher-order derivatives and in fact use derivatives up to third order for abstract
sensitivity analysis (applied to approximate computing); however, like the other works, they are
also restricted to only the interval domain. Immler [2018] develops a solver to bound the solutions of
differential equations using interval and zonotope bounds on first and second derivatives. However,
all their derivatives are evaluated purely symbolically, and so they make no use of automatic
differentiation; thus, their work suffers scalability problems. Despite their derivative computations
being purely symbolic, evaluating those symbolic expressions using zonotopes to capture linear
dependencies between first and second-order derivative terms does greatly improve the precision of
their verified second-order Runge Kutta solver. Also motivated by verified ODE solutions, Bendtsen
and Stauning [1996] and Stauning [1997] develop a validated AD framework for computing interval
arithmetic liftings of the higher-order derivatives needed to compute higher-order Taylor series
expansions of the solution to an ODE, but their work is restricted to only the interval domain.

Meta-Abstract Interpretation. There are a few works which provide meta-abstract interpreta-
tions [Cousot et al. 2019; Reps and Thakur 2016; Singh et al. 2018b; Sotoudeh and Thakur 2020],
meaning they do not propose a new abstract domain, but rather a new construction that can be
instantiated with different abstract domains. However, none of these works target AD. Additionally,
there are techniques to automate the construction of transformers for a variety of numerical abstract
domains [Miné 2006], but the precision and scalability of these transformers are usually suboptimal.

9 CONCLUSION

We developed the first general construction for abstract interpretation of automatic differentiation
that supports both higher-order derivatives and virtually any numerical abstract domain. We
instantiate our method with both intervals and zonotopes, and in the latter case, we show how to
relationally leverage dependencies across derivatives to further improve precision. Our evaluation
demonstrates the applicability and scalability of our technique.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their comments. This research was supported in part by
NSF Grants No. CCF-1846354, CCF-1956374, CCF-2008883, CNS-2148583, USDA NIFA Grant No.
AG NIFA 2021-67021-33449, a gift from Facebook, and a Sloan UCEM Graduate Scholarship.

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 161. Publication date: October 2022.

161:28 Jacob Laurel, Rem Yang, Shubham Ugare, Robert Nagel, Gagandeep Singh, and Sasa Misailovic

REFERENCES

Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat,

Geoffrey Irving, Michael Isard, et al. 2016. TensorFlow: A System for Large-Scale Machine Learning. In 12th USENIX

symposium on operating systems design and implementation.

Aws Albarghouthi. 2021. Introduction to Neural Network Verification. Foundations and Trends® in Programming Languages

(2021).

David Alvarez-Melis and Tommi S Jaakkola. 2018. Towards robust interpretability with self-explaining neural networks. In

Proceedings of the 32nd International Conference on Neural Information Processing Systems.

Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. 2018. Towards better understanding of gradient-based

attribution methods for Deep Neural Networks. In 6th International Conference on Learning Representations (ICLR).

Claus Bendtsen and Ole Stauning. 1996. FADBAD, a flexible C++ package for automatic differentiation. (1996).

Jesse Bettencourt, Matthew J Johnson, and David Duvenaud. 2019. Taylor-mode automatic differentiation for higher-order

derivatives in JAX. (2019).

Patrick Cousot and Radhia Cousot. 1977. Abstract interpretation: a unified lattice model for static analysis of programs by

construction or approximation of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles of

programming languages.

Patrick Cousot, Roberto Giacobazzi, and Francesco Ranzato. 2019. A2I: abstract2 interpretation. Proceedings of the ACM on

Programming Languages POPL (2019).

Jens Deussen. 2021. Global Derivatives. Ph. D. Dissertation.

Fr. Faa Di Bruno. 1857. Note sur une nouvelle formule de calcul différentiel. Quarterly J. Pure Appl. Math (1857).

Pietro Di Gianantonio and Abbas Edalat. 2013. A language for differentiable functions. In International Conference on

Foundations of Software Science and Computational Structures.

Thomas Fel, Mélanie Ducoffe, David Vigouroux, Rémi Cadène, Mikael Capelle, Claire Nicodème, and Thomas Serre. 2022.

Don’t Lie to Me! Robust and Efficient Explainability with Verified Perturbation Analysis. arXiv preprint arXiv:2202.07728

(2022).

Jeffrey Fike and Juan Alonso. 2011. The Development of Hyper-Dual Numbers for Exact Second-Derivative Calculations.

AIAA (2011).

Cormac Flanagan, Amr Sabry, Bruce F Duba, and Matthias Felleisen. 1993. The essence of compiling with continuations. In

Proceedings of the ACM SIGPLAN 1993 conference on Programming language design and implementation.

Oleg Fryazinov, Alexander Pasko, and Peter Comninos. 2010. Technical Section: Fast Reliable Interrogation of Procedurally

Defined Implicit Surfaces Using Extended Revised Affine Arithmetic. Comput. Graph. 34, 6 (2010).

Khalil Ghorbal, Eric Goubault, and Sylvie Putot. 2009. The zonotope abstract domain taylor1+. In International Conference

on Computer Aided Verification.

Andreas Griewank, Jean Utke, and Andrea Walther. 2000. Evaluating higher derivative tensors by forward propagation of

univariate Taylor series. Mathematics of computation (2000).

Andreas Griewank and Andrea Walther. 2008. Evaluating derivatives: principles and techniques of algorithmic differentiation.

SIAM.

Horace He. 2019. The State of Machine Learning Frameworks in 2019. https://thegradient.pub/state-of-ml-frameworks-

2019-pytorch-dominates-research-tensorflow-dominates-industry/. The Gradient (2019).

Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley, and Frédo Durand. 2020. DiffTaichi:

Differentiable Programming for Physical Simulation. In International Conference on Learning Representations.

Jan Hückelheim, Ziqing Luo, Sri Hari Krishna Narayanan, Stephen Siegel, and Paul D Hovland. 2018. Verifying Properties

of Differentiable Programs. In International Static Analysis Symposium.

Mathieu Huot, Sam Staton, and Matthijs Vákár. 2021. Higher Order Automatic Differentiation of Higher Order Functions.

arXiv preprint arXiv:2101.06757 (2021).

Fabian Immler. 2018. A Verified ODE Solver and Smale’s 14th Problem. Ph. D. Dissertation. Technische Universität München.

Joseph D Janizek, Pascal Sturmfels, and Su-In Lee. 2021. Explaining explanations: Axiomatic feature interactions for deep

networks. Journal of Machine Learning Research 22 (2021).

Bertrand Jeannet and Antoine Miné. 2009. Apron: A library of numerical abstract domains for static analysis. In International

Conference on Computer Aided Verification. 661ś667.

Matt Jordan and Alex Dimakis. 2021. Provable Lipschitz certification for generative models. In International Conference on

Machine Learning. PMLR, 5118ś5126.

Jerzy Karczmarczuk. 2001. Functional differentiation of computer programs. Higher-order and symbolic computation (2001).

Faustyna Krawiec, Neel Krishnaswami, Simon Peyton Jones, Tom Ellis, Andrew Fitzgibbon, and R Eisenberg. 2022. Provably

correct, asymptotically efficient, higher-order reverse-mode automatic differentiation. Proceedings of the ACM on

Programming Languages POPL (2022).

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 161. Publication date: October 2022.

https://thegradient.pub/state-of-ml-frameworks-2019-pytorch-dominates-research-tensorflow-dominates-industry/
https://thegradient.pub/state-of-ml-frameworks-2019-pytorch-dominates-research-tensorflow-dominates-industry/

A General Construction for Abstract Interpretation of Higher-Order Automatic Differentiation 161:29

Jacob Laurel, Rem Yang, Gagandeep Singh, and Sasa Misailovic. 2022a. A Dual Number Abstraction for Static Analysis of

Clarke Jacobians. Proceedings of the ACM on Programming Languages POPL (2022).

Jacob Laurel, Rem Yang, Shubham Ugare, Robert Nagel, Gagandeep Singh, and Sasa Misailovic. 2022b. Appendix to A

General Construction for Abstract Interpretation of Higher-Order Automatic Differentiation. https://jsl1994.github.io/

papers/OOPSLA2022_appendix.pdf

Jacob Laurel, Rem Yang, Shubham Ugare, Robert Nagel, Gagandeep Singh, and Sasa Misailovic. 2022c. Artifact for A General

Construction for Abstract Interpretation of Higher-Order Automatic Differentiation. (2022). https://doi.org/10.1145/

3554329

Yann LeCun. 1998. The MNIST database of handwritten digits. http://yann. lecun. com/exdb/mnist/ (1998).

Tzu-Mao Li, Michaël Gharbi, Andrew Adams, Frédo Durand, and Jonathan Ragan-Kelley. 2018. Differentiable programming

for image processing and deep learning in Halide. ACM Transactions on Graphics (TOG) 37, 4 (2018).

Ravi Mangal, Kartik Sarangmath, Aditya V Nori, and Alessandro Orso. 2020. Probabilistic Lipschitz Analysis of Neural

Networks. In International Static Analysis Symposium.

Antoine Miné. 2006. Symbolic methods to enhance the precision of numerical abstract domains. In International Workshop

on Verification, Model Checking, and Abstract Interpretation.

Adam Paszke, Daniel D Johnson, David Duvenaud, Dimitrios Vytiniotis, Alexey Radul, Matthew J Johnson, Jonathan

Ragan-Kelley, and Dougal Maclaurin. 2021. Getting to the point: index sets and parallelism-preserving autodiff for

pointful array programming. Proceedings of the ACM on Programming Languages ICFP (2021).

Colin Paterson, Haoze Wu, John Grese, Radu Calinescu, Corina S Păsăreanu, and Clark Barrett. 2021. Deepcert: Verification

of contextually relevant robustness for neural network image classifiers. In International Conference on Computer Safety,

Reliability, and Security.

Barak A Pearlmutter and Jeffrey Mark Siskind. 2007. Lazy Multivariate Higher-Order Forward-Mode AD. In Symposium on

Principles of Programming Languages.

Thomas Reps and Aditya Thakur. 2016. Automating abstract interpretation. In International Conference on Verification,

Model Checking, and Abstract Interpretation.

Wonryong Ryou, Jiayu Chen, Mislav Balunovic, Gagandeep Singh, Andrei Dan, and Martin Vechev. 2021. Scalable polyhedral

verification of recurrent neural networks. In International Conference on Computer Aided Verification.

Benjamin Sherman, Jesse Michel, and Michael Carbin. 2021. 𝜆𝑆 : Computable Semantics for Differentiable Programming

with Higher-Order Functions and Datatypes. Proceedings of the ACM on Programming Languages POPL (2021).

Zhouxing Shi, Huan Zhang, Kai-Wei Chang,Minlie Huang, and Cho-Jui Hsieh. 2019. Robustness Verification for Transformers.

In International Conference on Learning Representations.

Gagandeep Singh, Timon Gehr, MatthewMirman, Markus Püschel, andMartin T Vechev. 2018a. Fast and Effective Robustness

Certification. NeurIPS (2018).

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. 2019. An abstract domain for certifying neural networks.

Proceedings of the ACM on Programming Languages POPL (2019).

Gagandeep Singh, Markus Püschel, and Martin Vechev. 2017. Fast polyhedra abstract domain. In Proceedings of the 44th

ACM SIGPLAN Symposium on Principles of Programming Languages.

Gagandeep Singh, Markus Püschel, and Martin Vechev. 2018b. A practical construction for decomposing numerical abstract

domains. Proceedings of the ACM on Programming Languages POPL (2018).

Matthew Sotoudeh and Aditya V Thakur. 2020. Abstract Neural Networks. In International Static Analysis Symposium.

Ole Stauning. 1997. Automatic validation of numerical solutions.

Jorge Stolfi and Luiz Henrique de Figueiredo. 2003. An introduction to affine arithmetic. Trends in Computational and

Applied Mathematics 4 (2003).

Vassilis Vassiliadis, Jan Riehme, Jens Deussen, Konstantinos Parasyris, Christos D Antonopoulos, Nikolaos Bellas, Spyros

Lalis, and Uwe Naumann. 2016. Towards automatic significance analysis for approximate computing. In 2016 IEEE/ACM

International Symposium on Code Generation and Optimization.

Andrea Walther and Andreas Griewank. 2012. Getting Started with ADOL-C. Combinatorial Scientific Computing (2012).

Rem Yang, Jacob Laurel, Sasa Misailovic, and Gagandeep Singh. 2022. Provable Defense Against Geometric Transformations.

arXiv preprint arXiv:2207.11177 (2022).

Received 2022-04-15; accepted 2022-09-01

Proc. ACM Program. Lang., Vol. 6, No. OOPSLA2, Article 161. Publication date: October 2022.

https://jsl1994.github.io/papers/OOPSLA2022_appendix.pdf
https://jsl1994.github.io/papers/OOPSLA2022_appendix.pdf
https://doi.org/10.1145/3554329
https://doi.org/10.1145/3554329

	Abstract
	1 Introduction
	2 Example
	3 Preliminaries
	3.1 Mathematical Definitions
	3.2 Forward-Mode Automatic Differentiation

	4 Language Syntax and Semantics
	4.1 Syntax
	4.2 Concrete AD Meta-Semantics
	4.3 Precision Enhancement
	4.4 Correctness

	5 Abstract Semantics of Higher-Order AD
	5.1 Choosing an Abstract Domain
	5.2 Abstract Meta-Semantics
	5.3 Soundness

	6 Instantiations
	6.1 Interval AD
	6.2 Zonotope AD

	7 Case Studies
	7.1 Methodology
	7.2 Robust Derivative-Based Interpretations
	7.3 Lipschitz Certification

	8 Related Work
	9 Conclusion
	References

